» Articles » PMID: 34257838

Understanding Three-dimensional Chromatin Organization in Diploid Genomes

Overview
Specialty Biotechnology
Date 2021 Jul 14
PMID 34257838
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The three-dimensional (3D) organization of chromatin in the nucleus of diploid eukaryotic organisms has fascinated biologists for many years. Despite major progress in chromatin conformation studies, current knowledge regarding the spatial organization of diploid (maternal and paternal) genomes is still limited. Recent advances in Hi-C technology and data processing approaches have enabled construction of diploid Hi-C contact maps. These maps greatly accelerated the pace of novel discoveries in haplotype-resolved 3D genome studies, revealing the role of allele biased chromatin conformation in transcriptional regulation. Here, we review emerging concepts and haplotype phasing strategies of Hi-C data in 3D diploid genome studies. We discuss new insights on homologous chromosomal organization and the interplay between allelic biased chromatin architecture and several nuclear functions, explaining how haplotype-resolved Hi-C technologies have been used to resolve important biological questions.

Citing Articles

Reconstruction of diploid higher-order human 3D genome interactions from noisy Pore-C data using Dip3D.

Chen Y, Lin Z, Wang S, Wu B, Niu L, Zhong J Nat Struct Mol Biol. 2025; .

PMID: 40038455 DOI: 10.1038/s41594-025-01512-w.


Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet.

Gao G, Liu R, Hu S, He M, Zhang J, Gao D J Anim Sci Biotechnol. 2024; 15(1):60.

PMID: 38693536 PMC: 11064361. DOI: 10.1186/s40104-024-01016-5.


Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes.

Gutnik S, You J, Sawh A, Andriollo A, Mango S Genome Biol. 2024; 25(1):71.

PMID: 38486337 PMC: 10941459. DOI: 10.1186/s13059-024-03199-6.


Haplotype-resolved 3D chromatin architecture of the hybrid pig.

Lin Y, Li J, Gu Y, Jin L, Bai J, Zhang J Genome Res. 2024; 34(2):310-325.

PMID: 38479837 PMC: 10984390. DOI: 10.1101/gr.278101.123.


3D Genome Reconstruction from Partially Phased Hi-C Data.

Cifuentes D, Draisma J, Henriksson O, Korchmaros A, Kubjas K Bull Math Biol. 2024; 86(4):33.

PMID: 38386111 PMC: 10884149. DOI: 10.1007/s11538-024-01263-7.


References
1.
Hoencamp C, Dudchenko O, Elbatsh A, Brahmachari S, Raaijmakers J, van Schaik T . 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science. 2021; 372(6545):984-989. PMC: 8172041. DOI: 10.1126/science.abe2218. View

2.
Hua N, Tjong H, Shin H, Gong K, Zhou X, Alber F . Producing genome structure populations with the dynamic and automated PGS software. Nat Protoc. 2018; 13(5):915-926. PMC: 6043163. DOI: 10.1038/nprot.2018.008. View

3.
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y . Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature. 2017; 547(7664):419-424. PMC: 9674007. DOI: 10.1038/nature23262. View

4.
Hou C, Li L, Qin Z, Corces V . Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell. 2012; 48(3):471-84. PMC: 3496039. DOI: 10.1016/j.molcel.2012.08.031. View

5.
Bonora G, Deng X, Fang H, Ramani V, Qiu R, Berletch J . Orientation-dependent Dxz4 contacts shape the 3D structure of the inactive X chromosome. Nat Commun. 2018; 9(1):1445. PMC: 5899087. DOI: 10.1038/s41467-018-03694-y. View