» Articles » PMID: 34175931

Plastic Rewiring of Sef1 Transcriptional Networks and the Potential of Nonfunctional Transcription Factor Binding in Facilitating Adaptive Evolution

Overview
Journal Mol Biol Evol
Specialty Biology
Date 2021 Jun 27
PMID 34175931
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Prior and extensive plastic rewiring of a transcriptional network, followed by a functional switch of the conserved transcriptional regulator, can shape the evolution of a new network with diverged functions. The presence of three distinct iron regulatory systems in fungi that use orthologous transcriptional regulators suggests that these systems evolved in that manner. Orthologs of the transcriptional activator Sef1 are believed to be central to how iron regulatory systems developed in fungi, involving gene gain, plastic network rewiring, and switches in regulatory function. We show that, in the protoploid yeast Lachancea kluyveri, plastic rewiring of the L. kluyveri Sef1 (Lk-Sef1) network, together with a functional switch, enabled Lk-Sef1 to regulate TCA cycle genes, unlike Candida albicans Sef1 that mainly regulates iron-uptake genes. Moreover, we observed pervasive nonfunctional binding of Sef1 to its target genes. Enhancing Lk-Sef1 activity resuscitated the corresponding transcriptional network, providing immediate adaptive benefits in changing environments. Our study not only sheds light on the evolution of Sef1-centered transcriptional networks but also shows the adaptive potential of nonfunctional transcription factor binding for evolving phenotypic novelty and diversity.

Citing Articles

Protein moonlighting by a target gene dominates phenotypic divergence of the Sef1 transcriptional regulatory network in yeasts.

Hsu P, Lu T, Hung P, Leu J Nucleic Acids Res. 2024; 52(22):13914-13930.

PMID: 39565215 PMC: 11662654. DOI: 10.1093/nar/gkae1147.


Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis.

Lombardi L, Salzberg L, O Cinneide E, OBrien C, Morio F, Turner S Nat Commun. 2024; 15(1):9190.

PMID: 39448588 PMC: 11502921. DOI: 10.1038/s41467-024-53442-8.


The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors.

Kuo C, Tay R, Lin H, Juan S, Vidal-Diez de Ulzurrun G, Chang Y Nat Microbiol. 2024; 9(7):1738-1751.

PMID: 38649409 PMC: 11724650. DOI: 10.1038/s41564-024-01679-w.


Dissecting an ancient stress resistance trait syndrome in the compost yeast .

Christensen K, Duarte A, Ma Z, Edwards J, Brem R bioRxiv. 2024; .

PMID: 38187519 PMC: 10769334. DOI: 10.1101/2023.12.21.572915.


Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity.

Shepherd M, Pierce A, Taylor T PLoS Biol. 2023; 21(10):e3002348.

PMID: 37871011 PMC: 10621929. DOI: 10.1371/journal.pbio.3002348.


References
1.
Santos M, Gomes A, Santos M, Carreto L, Moura G . The genetic code of the fungal CTG clade. C R Biol. 2011; 334(8-9):607-11. DOI: 10.1016/j.crvi.2011.05.008. View

2.
Dalal C, Johnson A . How transcription circuits explore alternative architectures while maintaining overall circuit output. Genes Dev. 2017; 31(14):1397-1405. PMC: 5588923. DOI: 10.1101/gad.303362.117. View

3.
Canessa P, Larrondo L . Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol. 2012; 97(3):939-55. DOI: 10.1007/s00253-012-4615-x. View

4.
Scannell D, Wolfe K . Rewiring the transcriptional regulatory circuits of cells. Genome Biol. 2004; 5(2):206. PMC: 395740. DOI: 10.1186/gb-2004-5-2-206. View

5.
Wilson M, Odom D . Evolution of transcriptional control in mammals. Curr Opin Genet Dev. 2009; 19(6):579-85. DOI: 10.1016/j.gde.2009.10.003. View