» Articles » PMID: 20231876

Evolutionary Tinkering with Conserved Components of a Transcriptional Regulatory Network

Overview
Journal PLoS Biol
Specialty Biology
Date 2010 Mar 17
PMID 20231876
Citations 92
Authors
Affiliations
Soon will be listed here.
Abstract

Gene expression variation between species is a major contributor to phenotypic diversity, yet the underlying flexibility of transcriptional regulatory networks remains largely unexplored. Transcription of the ribosomal regulon is a critical task for all cells; in S. cerevisiae the transcription factors Rap1, Fhl1, Ifh1, and Hmo1 form a multi-subunit complex that controls ribosomal gene expression, while in C. albicans this regulation is under the control of Tbf1 and Cbf1. Here, we analyzed, using full-genome transcription factor mapping, the roles, in both S. cerevisiae and C. albicans, of each orthologous component of this complete set of regulators. We observe dramatic changes in the binding profiles of the generalist regulators Cbf1, Hmo1, Rap1, and Tbf1, while the Fhl1-Ifh1 dimer is the only component involved in ribosomal regulation in both fungi: it activates ribosomal protein genes and rDNA expression in a Tbf1-dependent manner in C. albicans and a Rap1-dependent manner in S. cerevisiae. We show that the transcriptional regulatory network governing the ribosomal expression program of two related yeast species has been massively reshaped in cis and trans. Changes occurred in transcription factor wiring with cellular functions, movements in transcription factor hierarchies, DNA-binding specificity, and regulatory complexes assembly to promote global changes in the architecture of the fungal transcriptional regulatory network.

Citing Articles

Protein moonlighting by a target gene dominates phenotypic divergence of the Sef1 transcriptional regulatory network in yeasts.

Hsu P, Lu T, Hung P, Leu J Nucleic Acids Res. 2024; 52(22):13914-13930.

PMID: 39565215 PMC: 11662654. DOI: 10.1093/nar/gkae1147.


Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis.

Lombardi L, Salzberg L, O Cinneide E, OBrien C, Morio F, Turner S Nat Commun. 2024; 15(1):9190.

PMID: 39448588 PMC: 11502921. DOI: 10.1038/s41467-024-53442-8.


Complexes of HMO1 with DNA: Structure and Affinity.

Malinina D, Armeev G, Geraskina O, Korovina A, Studitsky V, Feofanov A Biomolecules. 2024; 14(9).

PMID: 39334951 PMC: 11430298. DOI: 10.3390/biom14091184.


exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds.

Dumeaux V, Massahi S, Bettauer V, Mottola A, Dukovny A, Khurdia S Elife. 2023; 12.

PMID: 37888959 PMC: 10699808. DOI: 10.7554/eLife.81406.


Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains.

Hung P, Liao C, Ko F, Tsai H, Leu J iScience. 2023; 26(5):106635.

PMID: 37138775 PMC: 10149407. DOI: 10.1016/j.isci.2023.106635.


References
1.
Freckleton G, Lippman S, Broach J, Tavazoie S . Microarray profiling of phage-display selections for rapid mapping of transcription factor-DNA interactions. PLoS Genet. 2009; 5(4):e1000449. PMC: 2659770. DOI: 10.1371/journal.pgen.1000449. View

2.
Humphrey E, Shamji A, Bernstein B, Schreiber S . Rpd3p relocation mediates a transcriptional response to rapamycin in yeast. Chem Biol. 2004; 11(3):295-9. DOI: 10.1016/j.chembiol.2004.03.001. View

3.
Prudhomme B, Gompel N, Carroll S . Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A. 2007; 104 Suppl 1:8605-12. PMC: 1876436. DOI: 10.1073/pnas.0700488104. View

4.
Bastidas R, Heitman J, Cardenas M . The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 2009; 5(2):e1000294. PMC: 2631134. DOI: 10.1371/journal.ppat.1000294. View

5.
Milo R, Itzkovitz S, Kashtan N, Chklovskii D, Alon U . Network motifs: simple building blocks of complex networks. Science. 2002; 298(5594):824-7. DOI: 10.1126/science.298.5594.824. View