» Articles » PMID: 34172716

TNF-α Induces Endothelial-mesenchymal Transition Promoting Stromal Development of Pancreatic Adenocarcinoma

Overview
Journal Cell Death Dis
Date 2021 Jun 26
PMID 34172716
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Endothelial-mesenchymal transition (EndMT) is an important source of cancer-associated fibroblasts (CAFs), which facilitates tumour progression. PDAC is characterised by abundant CAFs and tumour necrosis factor-α (TNF-α). Here, we show that TNF-α strongly induces human endothelial cells to undergo EndMT. Interestingly, TNF-α strongly downregulates the expression of the endothelial receptor TIE1, and reciprocally TIE1 overexpression partially prevents TNF-α-induced EndMT, suggesting that TNF-α acts, at least partially, through TIE1 regulation in this process. We also show that TNF-α-induced EndMT is reversible. Furthermore, TNF-α treatment of orthotopic mice resulted in an important increase in the stroma, including CAFs. Finally, secretome analysis identified TNFSF12, as a regulator that is also present in PDAC patients. With the aim of restoring normal angiogenesis and better access to drugs, our results support the development of therapies targeting CAFs or inducing the EndMT reversion process in PDAC.

Citing Articles

Cellular cross-talk drives mesenchymal transdifferentiation in diabetic kidney disease.

Chatterjee A, Tumarin J, Prabhakar S Front Med (Lausanne). 2025; 11():1499473.

PMID: 39839616 PMC: 11747801. DOI: 10.3389/fmed.2024.1499473.


Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition.

Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q Cell Commun Signal. 2025; 23(1):16.

PMID: 39789529 PMC: 11720945. DOI: 10.1186/s12964-025-02028-y.


SIRT1 Activation Suppresses Corneal Endothelial-Mesenchymal Transition via the TGF-β/Smad2/3 Pathway.

Yu Y, Guo R, Ling J, Xu C, Ma M, Dong X Curr Issues Mol Biol. 2024; 46(12):13846-13859.

PMID: 39727955 PMC: 11727023. DOI: 10.3390/cimb46120827.


Unraveling the role of cancer-associated fibroblasts in colorectal cancer.

Cui J, Ma J, Gao X, Sheng Z, Pan Z, Shi L World J Gastrointest Oncol. 2024; 16(12):4565-4578.

PMID: 39678792 PMC: 11577382. DOI: 10.4251/wjgo.v16.i12.4565.


Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation.

Lacina L, Kolar M, Pfeiferova L, Gal P, Smetana Jr K Front Immunol. 2024; 15:1403570.

PMID: 39676864 PMC: 11638159. DOI: 10.3389/fimmu.2024.1403570.


References
1.
Vizcaino J, Csordas A, Del-Toro N, Dianes J, Griss J, Lavidas I . 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015; 44(D1):D447-56. PMC: 4702828. DOI: 10.1093/nar/gkv1145. View

2.
Sato T, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gridley T . Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995; 376(6535):70-4. DOI: 10.1038/376070a0. View

3.
Wilhelm A, Shepherd E, Amatucci A, Munir M, Reynolds G, Humphreys E . Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation. J Pathol. 2016; 239(1):109-21. PMC: 4949530. DOI: 10.1002/path.4707. View

4.
Paraiso K, Smalley K . Fibroblast-mediated drug resistance in cancer. Biochem Pharmacol. 2013; 85(8):1033-41. DOI: 10.1016/j.bcp.2013.01.018. View

5.
Nieto M, Huang R, Jackson R, Thiery J . EMT: 2016. Cell. 2016; 166(1):21-45. DOI: 10.1016/j.cell.2016.06.028. View