» Articles » PMID: 34163942

Realizing High Hydrogen Evolution Activity Under Visible Light Using Narrow Band Gap Organic Photocatalysts

Overview
Journal Chem Sci
Specialty Chemistry
Date 2021 Jun 24
PMID 34163942
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The design and synthesis of conjugated semiconducting polymers for photocatalytic hydrogen evolution have engendered intense recent interest. However, most reported organic polymer photocatalysts show a relatively broad band gap with weak light absorption ability in the visible light region, which commonly leads to a low photocatalytic activity under visible light. Herein, we synthesize three novel dithieno[3,2-:2',3'-]thiophene-,-dioxide (DTDO) containing conjugated polymer photocatalysts by a facile C-H arylation coupling polymerization reaction. The resulting polymers show a broad visible light absorption range up to 700 nm and a narrow band gap down to 1.81 eV due to the introduction of the DTDO unit. Benefiting from the donor-acceptor polymer structure and the high content of the DTDO unit, the three-dimensional polymer without the addition of a Pt co-catalyst shows an attractive photocatalytic hydrogen evolution rate of 16.32 mmol h g under visible light irradiation, which is much higher than that of most reported organic polymer photocatalysts under visible light.

Citing Articles

Diacetylene-bridged covalent organic framework as crystalline graphdiyne analogue for photocatalytic hydrogen evolution.

Lin Z, Dai S, Yao S, Lin Q, Fu M, Chung L Chem Sci. 2024; 16(4):1948-1956.

PMID: 39722787 PMC: 11667833. DOI: 10.1039/d4sc06633b.


Functionalized Linear Conjugated Polymer/TiO Heterojunctions for Significantly Enhancing Photocatalytic H Evolution.

Gong H, Xing Y, Li J, Liu S Molecules. 2024; 29(5).

PMID: 38474617 PMC: 10935027. DOI: 10.3390/molecules29051103.


Organic Donor-Acceptor Systems for Photocatalysis.

Wang L, Zhu W Adv Sci (Weinh). 2023; 11(10):e2307227.

PMID: 38145342 PMC: 10933655. DOI: 10.1002/advs.202307227.


Stille type P-C coupling polycondensation towards phosphorus-crosslinked polythiophenes with P-regulated photocatalytic hydrogen evolution.

Zhang Z, Zhang B, Han X, Chen H, Xue C, Peng M Chem Sci. 2023; 14(11):2990-2998.

PMID: 36937600 PMC: 10016342. DOI: 10.1039/d2sc06702a.


Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water.

McQueen E, Bai Y, Sprick R Nanomaterials (Basel). 2022; 12(23).

PMID: 36500922 PMC: 9739915. DOI: 10.3390/nano12234299.


References
1.
Wang J, Ouyang G, Wang Y, Qiao X, Li W, Li H . 1,3,5-Triazine and dibenzo[b,d]thiophene sulfone based conjugated porous polymers for highly efficient photocatalytic hydrogen evolution. Chem Commun (Camb). 2020; 56(10):1601-1604. DOI: 10.1039/c9cc08412f. View

2.
Huang W, He Q, Hu Y, Li Y . Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angew Chem Int Ed Engl. 2019; 58(26):8676-8680. DOI: 10.1002/anie.201900046. View

3.
Simon T, Bouchonville N, Berr M, Vaneski A, Adrovic A, Volbers D . Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater. 2014; 13(11):1013-8. DOI: 10.1038/nmat4049. View

4.
Liu M, Huang Q, Wang S, Li Z, Li B, Jin S . Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers. Angew Chem Int Ed Engl. 2018; 57(37):11968-11972. DOI: 10.1002/anie.201806664. View

5.
Suresh Mothika V, Sutar P, Verma P, Das S, Pati S, Maji T . Regulating Charge-Transfer in Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Chemistry. 2019; 25(15):3867-3874. DOI: 10.1002/chem.201805478. View