» Articles » PMID: 34157105

Determining Subpopulation Methylation Profiles from Bisulfite Sequencing Data of Heterogeneous Samples Using DXM

Overview
Specialty Biochemistry
Date 2021 Jun 22
PMID 34157105
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Epigenetic changes, such as aberrant DNA methylation, contribute to cancer clonal expansion and disease progression. However, identifying subpopulation-level changes in a heterogeneous sample remains challenging. Thus, we have developed a computational approach, DXM, to deconvolve the methylation profiles of major allelic subpopulations from the bisulfite sequencing data of a heterogeneous sample. DXM does not require prior knowledge of the number of subpopulations or types of cells to expect. We benchmark DXM's performance and demonstrate improvement over existing methods. We further experimentally validate DXM predicted allelic subpopulation-methylation profiles in four Diffuse Large B-Cell Lymphomas (DLBCLs). Lastly, as proof-of-concept, we apply DXM to a cohort of 31 DLBCLs and relate allelic subpopulation methylation profiles to relapse. We thus demonstrate that DXM can robustly find allelic subpopulation methylation profiles that may contribute to disease progression using bisulfite sequencing data of any heterogeneous sample.

Citing Articles

Whole genome methylation sequencing in blood from persons with mild cognitive impairment and dementia due to Alzheimer's disease identifies cognitive status.

Madrid A, Papale L, Bergmann P, Breen C, Clark L, Asthana S Alzheimers Dement. 2025; 21(2):e14474.

PMID: 39743828 PMC: 11848161. DOI: 10.1002/alz.14474.


vmrseq: probabilistic modeling of single-cell methylation heterogeneity.

Shen N, Korthauer K Genome Biol. 2024; 25(1):321.

PMID: 39736632 PMC: 11687023. DOI: 10.1186/s13059-024-03457-7.


Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer's disease-like pathologies in male mouse model.

Usmani S, Jung H, Zhang Q, Kim M, Choi Y, Caglayan A Nat Commun. 2024; 15(1):9419.

PMID: 39482312 PMC: 11528003. DOI: 10.1038/s41467-024-53507-8.


Whole genome methylation sequencing in blood from persons with mild cognitive impairment and dementia due to Alzheimer's disease identifies cognitive status.

Madrid A, Papale L, Bergmann P, Breen C, Clark L, Asthana S bioRxiv. 2024; .

PMID: 39386499 PMC: 11463426. DOI: 10.1101/2024.09.26.615196.


Computational deconvolution of DNA methylation data from mixed DNA samples.

Ferro Dos Santos M, Giuili E, De Koker A, Everaert C, De Preter K Brief Bioinform. 2024; 25(3).

PMID: 38762790 PMC: 11102637. DOI: 10.1093/bib/bbae234.


References
1.
Chen L, Ge B, Casale F, Vasquez L, Kwan T, Garrido-Martin D . Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell. 2016; 167(5):1398-1414.e24. PMC: 5119954. DOI: 10.1016/j.cell.2016.10.026. View

2.
Juhling F, Kretzmer H, Bernhart S, Otto C, Stadler P, Hoffmann S . metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 2015; 26(2):256-62. PMC: 4728377. DOI: 10.1101/gr.196394.115. View

3.
Martens J, Stunnenberg H . BLUEPRINT: mapping human blood cell epigenomes. Haematologica. 2013; 98(10):1487-9. PMC: 3789449. DOI: 10.3324/haematol.2013.094243. View

4.
Dorri F, Mendelowitz L, Corrada Bravo H . methylFlow: cell-specific methylation pattern reconstruction from high-throughput bisulfite-converted DNA sequencing. Bioinformatics. 2016; 32(11):1618-24. PMC: 4892417. DOI: 10.1093/bioinformatics/btw287. View

5.
Theunissen T, Friedli M, He Y, Planet E, ONeil R, Markoulaki S . Molecular Criteria for Defining the Naive Human Pluripotent State. Cell Stem Cell. 2016; 19(4):502-515. PMC: 5065525. DOI: 10.1016/j.stem.2016.06.011. View