» Articles » PMID: 34146469

A Cerebellar-thalamocortical Pathway Drives Behavioral Context-dependent Movement Initiation

Abstract

Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.

Citing Articles

Quantitative Assessment of Deep Gray Matter Susceptibility and Correlation With Cognition in Patients With Liver Cirrhosis.

Wu W, Su Y, Qin Z, Kang J, Xiang D, Liu D Brain Behav. 2025; 15(1):e70240.

PMID: 39778978 PMC: 11710887. DOI: 10.1002/brb3.70240.


Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.

Pemberton J, Chadderton P, Costa R Nat Commun. 2024; 15(1):10913.

PMID: 39738061 PMC: 11686095. DOI: 10.1038/s41467-024-55315-6.


Revealing Goal-Directed Neural Control of the Pharyngeal Phase of Swallowing.

Zainaee S, Archer B, Scherer R, Bingman V, Ghasemi M Dysphagia. 2024; .

PMID: 39387924 DOI: 10.1007/s00455-024-10758-3.


Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA.

Reddy N, Zvolanek K, Moia S, Caballero-Gaudes C, Bright M Imaging Neurosci (Camb). 2024; 2.

PMID: 39328846 PMC: 11426116. DOI: 10.1162/imag_a_00057.


Temporal Information Processing in the Cerebellum and Basal Ganglia.

Tanaka M, Kameda M, Okada K Adv Exp Med Biol. 2024; 1455:95-116.

PMID: 38918348 DOI: 10.1007/978-3-031-60183-5_6.


References
1.
Balleine B . The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron. 2019; 104(1):47-62. DOI: 10.1016/j.neuron.2019.09.024. View

2.
Chen T, Wardill T, Sun Y, Pulver S, Renninger S, Baohan A . Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013; 499(7458):295-300. PMC: 3777791. DOI: 10.1038/nature12354. View

3.
Li N, Chen T, Guo Z, Gerfen C, Svoboda K . A motor cortex circuit for motor planning and movement. Nature. 2015; 519(7541):51-6. DOI: 10.1038/nature14178. View

4.
Petreanu L, Mao T, Sternson S, Svoboda K . The subcellular organization of neocortical excitatory connections. Nature. 2009; 457(7233):1142-5. PMC: 2745650. DOI: 10.1038/nature07709. View

5.
Dudman J, Krakauer J . The basal ganglia: from motor commands to the control of vigor. Curr Opin Neurobiol. 2016; 37:158-166. DOI: 10.1016/j.conb.2016.02.005. View