» Articles » PMID: 34136281

An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging

Overview
Journal J Ophthalmol
Publisher Wiley
Specialty Ophthalmology
Date 2021 Jun 17
PMID 34136281
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Results: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85).

Conclusions: Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings.

Citing Articles

Application of artificial intelligence in glaucoma care: An updated review.

Wu J, Lin S, Moghimi S Taiwan J Ophthalmol. 2024; 14(3):340-351.

PMID: 39430354 PMC: 11488804. DOI: 10.4103/tjo.TJO-D-24-00044.


Highly Accurate and Precise Automated Cup-to-Disc Ratio Quantification for Glaucoma Screening.

Chaurasia A, Greatbatch C, Han X, Gharahkhani P, Mackey D, Macgregor S Ophthalmol Sci. 2024; 4(5):100540.

PMID: 39051045 PMC: 11268341. DOI: 10.1016/j.xops.2024.100540.


Automated Classification of Physiologic, Glaucomatous, and Glaucoma-Suspected Optic Discs Using Machine Learning.

Diener R, Renz A, Eckhard F, Segbert H, Eter N, Malcherek A Diagnostics (Basel). 2024; 14(11).

PMID: 38893600 PMC: 11171940. DOI: 10.3390/diagnostics14111073.


Artificial intelligence in glaucoma: opportunities, challenges, and future directions.

Huang X, Islam M, Akter S, Ahmed F, Kazami E, Abu Serhan H Biomed Eng Online. 2023; 22(1):126.

PMID: 38102597 PMC: 10725017. DOI: 10.1186/s12938-023-01187-8.


Knowledge and Awareness of Glaucoma Among People Living in Taif City in the Western Region of Saudi Arabia.

Albaqami F, Saud Aljuaid A, Khalid Alrabie W, Abdulrahim Alotaibi M, Albaqami M, Sultan Alharthi F Cureus. 2023; 15(10):e47728.

PMID: 38022300 PMC: 10676192. DOI: 10.7759/cureus.47728.


References
1.
Nabavizadeh A, Payen T, Iuga A, Sagalovskiy I, Desrouilleres D, Saharkhiz N . Noninvasive Young's modulus visualization of fibrosis progression and delineation of pancreatic ductal adenocarcinoma (PDAC) tumors using Harmonic Motion Elastography (HME) . Theranostics. 2020; 10(10):4614-4626. PMC: 7150482. DOI: 10.7150/thno.37965. View

2.
Foster A, Gilbert C, Johnson G . Changing patterns in global blindness: 1988-2008. Community Eye Health. 2008; 21(67):37-9. PMC: 2580062. View

3.
Chen X, Xu Y, Wong D, Wong T, Liu J . Glaucoma detection based on deep convolutional neural network. Annu Int Conf IEEE Eng Med Biol Soc. 2016; 2015:715-8. DOI: 10.1109/EMBC.2015.7318462. View

4.
Burlina P, Joshi N, Pacheco K, Freund D, Kong J, Bressler N . Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration. JAMA Ophthalmol. 2018; 136(12):1359-1366. PMC: 6583826. DOI: 10.1001/jamaophthalmol.2018.4118. View

5.
Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann M, Linkohr B . A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Ophthalmology. 2018; 125(9):1410-1420. DOI: 10.1016/j.ophtha.2018.02.037. View