An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
Overview
Affiliations
Results: The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85).
Conclusions: Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings.
Application of artificial intelligence in glaucoma care: An updated review.
Wu J, Lin S, Moghimi S Taiwan J Ophthalmol. 2024; 14(3):340-351.
PMID: 39430354 PMC: 11488804. DOI: 10.4103/tjo.TJO-D-24-00044.
Highly Accurate and Precise Automated Cup-to-Disc Ratio Quantification for Glaucoma Screening.
Chaurasia A, Greatbatch C, Han X, Gharahkhani P, Mackey D, Macgregor S Ophthalmol Sci. 2024; 4(5):100540.
PMID: 39051045 PMC: 11268341. DOI: 10.1016/j.xops.2024.100540.
Diener R, Renz A, Eckhard F, Segbert H, Eter N, Malcherek A Diagnostics (Basel). 2024; 14(11).
PMID: 38893600 PMC: 11171940. DOI: 10.3390/diagnostics14111073.
Artificial intelligence in glaucoma: opportunities, challenges, and future directions.
Huang X, Islam M, Akter S, Ahmed F, Kazami E, Abu Serhan H Biomed Eng Online. 2023; 22(1):126.
PMID: 38102597 PMC: 10725017. DOI: 10.1186/s12938-023-01187-8.
Albaqami F, Saud Aljuaid A, Khalid Alrabie W, Abdulrahim Alotaibi M, Albaqami M, Sultan Alharthi F Cureus. 2023; 15(10):e47728.
PMID: 38022300 PMC: 10676192. DOI: 10.7759/cureus.47728.