» Articles » PMID: 34133925

PRRT2 Modulates Presynaptic Ca Influx by Interacting with P/Q-type Channels

Abstract

Loss-of-function mutations in proline-rich transmembrane protein-2 (PRRT2) cause paroxysmal disorders associated with defective Ca dependence of glutamatergic transmission. We find that either acute or constitutive PRRT2 deletion induces a significant decrease in the amplitude of evoked excitatory postsynaptic currents (eEPSCs) that is insensitive to extracellular Ca and associated with a reduced contribution of P/Q-type Ca channels to the EPSC amplitude. This synaptic phenotype parallels a decrease in somatic P/Q-type Ca currents due to a decreased membrane targeting of the channel with unchanged total expression levels. Co-immunoprecipitation, pull-down assays, and proteomics reveal a specific and direct interaction of PRRT2 with P/Q-type Ca channels. At presynaptic terminals lacking PRRT2, P/Q-type Ca channels reduce their clustering at the active zone, with a corresponding decrease in the P/Q-dependent presynaptic Ca signal. The data highlight the central role of PRRT2 in ensuring the physiological Ca sensitivity of the release machinery at glutamatergic synapses.

Citing Articles

Paroxysmal Kinesigenic Dyskinesia: Genetics and Pathophysiological Mechanisms.

Xu J, Li H, Wu Z Neurosci Bull. 2023; 40(7):952-962.

PMID: 38091244 PMC: 11250761. DOI: 10.1007/s12264-023-01157-z.


Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders.

Lin W Adv Genet (Hoboken). 2023; 4(2):2200018.

PMID: 37288166 PMC: 10242408. DOI: 10.1002/ggn2.202200018.


Pain-causing stinging nettle toxins target TMEM233 to modulate Na1.7 function.

Jami S, Deuis J, Klasfauseweh T, Cheng X, Kurdyukov S, Chung F Nat Commun. 2023; 14(1):2442.

PMID: 37117223 PMC: 10147923. DOI: 10.1038/s41467-023-37963-2.


Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication syndrome by genetic correction of an epilepsy network hub.

Forrest M, Dos Santos M, Piguel N, Wang Y, Hawkins N, Bagchi V Nat Commun. 2023; 14(1):825.

PMID: 36808153 PMC: 9938216. DOI: 10.1038/s41467-023-36087-x.


A Push-Pull Mechanism Between PRRT2 and β4-subunit Differentially Regulates Membrane Exposure and Biophysical Properties of NaV1.2 Sodium Channels.

Valente P, Marte A, Franchi F, Sterlini B, Casagrande S, Corradi A Mol Neurobiol. 2022; 60(3):1281-1296.

PMID: 36441479 PMC: 9899197. DOI: 10.1007/s12035-022-03112-x.


References
1.
Faraone S, Perlis R, Doyle A, Smoller J, Goralnick J, Holmgren M . Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005; 57(11):1313-23. DOI: 10.1016/j.biopsych.2004.11.024. View

2.
Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, DAlessandro R . REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 2013; 32(22):2994-3007. PMC: 3831314. DOI: 10.1038/emboj.2013.231. View

3.
Heron S, Dibbens L . Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet. 2013; 50(3):133-9. DOI: 10.1136/jmedgenet-2012-101406. View

4.
Shen Y, Ge W, Li Y, Hirano A, Lee H, Rohlmann A . Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proc Natl Acad Sci U S A. 2015; 112(10):2935-41. PMC: 4364199. DOI: 10.1073/pnas.1501364112. View

5.
Valtorta F, Benfenati F, Zara F, Meldolesi J . PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci. 2016; 39(10):668-679. DOI: 10.1016/j.tins.2016.08.005. View