» Articles » PMID: 34127785

The Power and Promise of Genetic Mapping from Plasmodium Falciparum Crosses Utilizing Human Liver-chimeric Mice

Abstract

Genetic crosses are most powerful for linkage analysis when progeny numbers are high, parental alleles segregate evenly and numbers of inbred progeny are minimized. We previously developed a novel genetic crossing platform for the human malaria parasite Plasmodium falciparum, an obligately sexual, hermaphroditic protozoan, using mice carrying human hepatocytes (the human liver-chimeric FRG NOD huHep mouse) as the vertebrate host. We report on two genetic crosses-(1) an allopatric cross between a laboratory-adapted parasite (NF54) of African origin and a recently patient-derived Asian parasite, and (2) a sympatric cross between two recently patient-derived Asian parasites. We generated 144 unique recombinant clones from the two crosses, doubling the number of unique recombinant progeny generated in the previous 30 years. The allopatric African/Asian cross has minimal levels of inbreeding and extreme segregation distortion, while in the sympatric Asian cross, inbred progeny predominate and parental alleles segregate evenly. Using simulations, we demonstrate that these progeny provide the power to map small-effect mutations and epistatic interactions. The segregation distortion in the allopatric cross slightly erodes power to detect linkage in several genome regions. We greatly increase the power and the precision to map biomedically important traits with these new large progeny panels.

Citing Articles

Systematic in vitro evolution in reveals key determinants of drug resistance.

Luth M, Godinez-Macias K, Chen D, Okombo J, Thathy V, Cheng X Science. 2024; 386(6725):eadk9893.

PMID: 39607932 PMC: 11809290. DOI: 10.1126/science.adk9893.


Measuring Growth, Resistance, and Recovery after Artemisinin Treatment of Plasmodium falciparum in a single semi-high-throughput Assay.

Sievert M, Singh P, Shoue D, Checkley L, Brenneman K, Qahash T bioRxiv. 2024; .

PMID: 39605531 PMC: 11601240. DOI: 10.1101/2024.11.11.623064.


MalKinID: A classification model for identifying malaria parasite genealogical relationships using identity-by-descent.

Wong W, Wang L, Schaffner S, Schaffner S, Li X, Cheeseman I Genetics. 2024; 229(2).

PMID: 39579070 PMC: 11796457. DOI: 10.1093/genetics/iyae197.


Identification of the drug/metabolite transporter 1 as a marker of quinine resistance in a NF54×Cam3.II genetic cross.

Kanai M, Mok S, Yeo T, Shears M, Ross L, Jeon J bioRxiv. 2024; .

PMID: 39386571 PMC: 11463348. DOI: 10.1101/2024.09.27.615529.


MalKinID: A Likelihood-Based Model for Identifying Malaria Parasite Genealogical Relationships Using Identity-by-Descent.

Wong W, Wang L, Schaffner S, Li X, Cheeseman I, Anderson T bioRxiv. 2024; .

PMID: 39071294 PMC: 11275886. DOI: 10.1101/2024.07.12.603328.


References
1.
Muller I, Hyde J . Antimalarial drugs: modes of action and mechanisms of parasite resistance. Future Microbiol. 2010; 5(12):1857-73. DOI: 10.2217/fmb.10.136. View

2.
Ferdig M, Cooper R, Mu J, Deng B, Joy D, Su X . Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol. 2004; 52(4):985-97. DOI: 10.1111/j.1365-2958.2004.04035.x. View

3.
Pattaradilokrat S, Cheesman S, Carter R . Linkage group selection: towards identifying genes controlling strain specific protective immunity in malaria. PLoS One. 2007; 2(9):e857. PMC: 1959240. DOI: 10.1371/journal.pone.0000857. View

4.
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A, Khim N . A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2013; 505(7481):50-5. PMC: 5007947. DOI: 10.1038/nature12876. View

5.
Okamoto N, Spurck T, Goodman C, McFadden G . Apicoplast and mitochondrion in gametocytogenesis of Plasmodium falciparum. Eukaryot Cell. 2008; 8(1):128-32. PMC: 2620748. DOI: 10.1128/EC.00267-08. View