» Articles » PMID: 34122913

Modulated Self-assembly of Metal-organic Frameworks

Overview
Journal Chem Sci
Specialty Chemistry
Date 2021 Jun 14
PMID 34122913
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Exercising fine control over the synthesis of metal-organic frameworks (MOFs) is key to ensuring reproducibility of physical properties such as crystallinity, particle size, morphology, porosity, defectivity, and surface chemistry. The principle of modulated self-assembly - incorporation of modulator molecules into synthetic mixtures - has emerged as the primary means to this end. This perspective article will detail the development of modulated synthesis, focusing primarily on coordination modulation, from a technique initially intended to cap the growth of MOF crystals to one that is now used regularly to enhance crystallinity, control particle size, induce defectivity and select specific phases. The various mechanistic driving forces will be discussed, as well as the influence of modulation on physical properties and how this can facilitate potential applications. Modulation is also increasingly being used to exert kinetic control over self-assembly; examples of phase selection and the development of new protocols to induce this will be provided. Finally, the application of modulated self-assembly to alternative materials will be discussed, and future perspectives on the area given.

Citing Articles

Engineered Shape-Tunable Copper-Coordinated Nanoparticles for Macrophage Reprogramming.

Gao H, Cheng R, Cardoso I, Lobita M, Pacheco-Fernandez I, Bartolo R Nano Lett. 2025; 25(7):2831-2840.

PMID: 39914892 PMC: 11849021. DOI: 10.1021/acs.nanolett.4c05999.


Thorium metal-organic framework crystallization for efficient recovery from rare earth element mixtures.

Gaidimas M, Smoljan C, Ye Z, Stern C, Malliakas C, Kirlikovali K Chem Sci. 2025; 16(9):3895-3903.

PMID: 39898309 PMC: 11783090. DOI: 10.1039/d4sc07652d.


Energy exchange between Nd and Er centers within molecular complexes.

Maniaki D, Sickinger A, Barrios L, Aguila D, Roubeau O, Guyot Y Chem Sci. 2024; .

PMID: 39479154 PMC: 11515939. DOI: 10.1039/d4sc03994g.


ZrO core cluster with formula unit [ZrO(OH)(OH)(CHCOO)(SO)]·HO obtained under mild conditions.

Garzon-Serrano A, Lozano J, Perez L, Sierra C, Macias M RSC Adv. 2024; 14(41):29910-29918.

PMID: 39301235 PMC: 11411961. DOI: 10.1039/d4ra03940h.


Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks.

Shaw E, Chester A, Robertson G, Castillo-Blas C, Bennett T Chem Sci. 2024; 15(28):10689-10712.

PMID: 39027308 PMC: 11253190. DOI: 10.1039/d4sc01433b.


References
1.
Trickett C, Gagnon K, Lee S, Gandara F, Burgi H, Yaghi O . Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl. 2015; 54(38):11162-7. DOI: 10.1002/anie.201505461. View

2.
Morris W, Wang S, Cho D, Auyeung E, Li P, Farha O . Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal-Organic Framework. ACS Appl Mater Interfaces. 2017; 9(39):33413-33418. DOI: 10.1021/acsami.7b01040. View

3.
Furukawa H, Gandara F, Zhang Y, Jiang J, Queen W, Hudson M . Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc. 2014; 136(11):4369-81. DOI: 10.1021/ja500330a. View

4.
Griffin S, Briuglia M, Ter Horst J, Forgan R . Assessing Crystallisation Kinetics of Zr Metal-Organic Frameworks through Turbidity Measurements to Inform Rapid Microwave-Assisted Synthesis. Chemistry. 2020; 26(30):6910-6918. PMC: 7318326. DOI: 10.1002/chem.202000993. View

5.
Park J, Wang Z, Sun L, Chen Y, Zhou H . Introduction of functionalized mesopores to metal-organic frameworks via metal-ligand-fragment coassembly. J Am Chem Soc. 2012; 134(49):20110-6. DOI: 10.1021/ja3085884. View