» Articles » PMID: 34097335

Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes

Overview
Specialty Chemistry
Date 2021 Jun 7
PMID 34097335
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Phytochrome proteins are light receptors that play a pivotal role in regulating the life cycles of plants and microorganisms. Intriguingly, while cyanobacterial phytochrome Cph1 and cyanobacteriochrome AnPixJ use the same phycocyanobilin (PCB) chromophore to absorb light, their excited-state behavior is very different. We employ multiscale calculations to rationalize the different early photoisomerization mechanisms of PCB in Cph1 and AnPixJ. We found that their electronic S , T , and S potential minima exhibit distinct geometric and electronic structures due to different hydrogen bond networks with the protein environment. These specific interactions influence the S electronic structures along the photoisomerization paths, ultimately leading to internal conversion in Cph1 but intersystem crossing in AnPixJ. This explains why the excited-state relaxation in AnPixJ is much slower (ca. 100 ns) than in Cph1 (ca. 30 ps). Further, we predict that efficient internal conversion in AnPixJ can be achieved upon protonating the carboxylic group that interacts with PCB.

Citing Articles

Rotameric Heterogeneity of Conserved Tryptophan Is Responsible for Reduced Photochemical Quantum Yield in Cyanobacteriochrome Slr1393g3.

Kohler L, Trunk F, Rohr V, Fischer T, Gartner W, Wachtveitl J Chemphyschem. 2024; 26(2):e202400453.

PMID: 39382835 PMC: 11733413. DOI: 10.1002/cphc.202400453.


Protein control of photochemistry and transient intermediates in phytochromes.

Salvadori G, Macaluso V, Pellicci G, Cupellini L, Granucci G, Mennucci B Nat Commun. 2022; 13(1):6838.

PMID: 36369284 PMC: 9652276. DOI: 10.1038/s41467-022-34640-8.


Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes.

Liu X, Zhang T, Fang Q, Fang W, Gonzalez L, Cui G Angew Chem Int Ed Engl. 2021; 60(34):18688-18693.

PMID: 34097335 PMC: 8456922. DOI: 10.1002/anie.202104853.

References
1.
Rensing S, Sheerin D, Hiltbrunner A . Phytochromes: More Than Meets the Eye. Trends Plant Sci. 2016; 21(7):543-546. DOI: 10.1016/j.tplants.2016.05.009. View

2.
Xu X, Port A, Wiebeler C, Zhao K, Schapiro I, Gartner W . Structural elements regulating the photochromicity in a cyanobacteriochrome. Proc Natl Acad Sci U S A. 2020; 117(5):2432-2440. PMC: 7007540. DOI: 10.1073/pnas.1910208117. View

3.
Yang X, Ren Z, Kuk J, Moffat K . Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome. Nature. 2011; 479(7373):428-32. PMC: 3337037. DOI: 10.1038/nature10506. View

4.
Strambi A, Durbeej B . Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Photochem Photobiol Sci. 2011; 10(4):569-79. DOI: 10.1039/c0pp00307g. View

5.
Rockwell N, Su Y, Lagarias J . Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol. 2006; 57:837-58. PMC: 2664748. DOI: 10.1146/annurev.arplant.56.032604.144208. View