A Metabolically Engineered Spin-labeling Approach for Studying Glycans on Cells
Overview
Authors
Affiliations
Metabolic glycan engineering (MGE) coupled with nitroxide spin-labeling (SL) was utilized to investigate the heterogeneous environment of cell surface glycans in select cancer and normal cells. This approach exploited the incorporation of azides into cell surface glycans followed by a click reaction with a new nitroxide spin label. Both sialic acid and -acetylglucosamine (GlcNAc) were targeted for spin labelling. Although each of these moieties experiences a diverse and heterogeneous glycan environment, their EPR spectra and hence mobility are both characterized as a linear combination of two distinct spectra where one component reflects a highly mobile or uncrowded micro-environment with the second component reflecting more restricted motion, reflective of increased crowding and packing within the glycocalyx. What differs among the spectra of the targeted glycans is the relative percentage of each component, with sialic acid moieties experiencing on average an ∼80% less crowded environment, where conversely GlcNAc/GalNAz labeled sites reported on average a ∼50% more crowded environment. These distinct environments are consistent with the organization of sugar moieties within cellular glycans where some residues occur close to the cell membrane/protein backbone ( more restricted) and others are more terminal in the glycan ( more mobile). Strikingly, different cell lines displayed varied relative populations of these two components, suggesting distinctive glycan packing, organization, and composition of different cells. This work demonstrates the capability of SDSL EPR to be a broadly useful tool for studying glycans on cells, and interpretation of the results provides insights for distinguishing the differences and changes in the local organization and heterogeneity of the cellular glycocalyx.
Rohokale R, Mane R, Malet L, Dessain S, Guo Z J Org Chem. 2024; 90(1):877-888.
PMID: 39680867 PMC: 11756922. DOI: 10.1021/acs.joc.4c02423.
Li W, Guo J, Hobson E, Xue X, Li Q, Fu J Angew Chem Int Ed Engl. 2024; 63(20):e202401921.
PMID: 38498603 PMC: 11073901. DOI: 10.1002/anie.202401921.
Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells.
Jaiswal M, Tran T, Guo J, Zhou M, Kundu S, Guo Z Appl Magn Reson. 2024; 55(1-3):317-333.
PMID: 38469359 PMC: 10927023. DOI: 10.1007/s00723-023-01624-w.
Jaiswal M, Zhou M, Guo J, Tran T, Kundu S, Jaufer A J Phys Chem B. 2023; 127(8):1749-1757.
PMID: 36808907 PMC: 10116567. DOI: 10.1021/acs.jpcb.2c09048.
Pierro A, Drescher M Chem Commun (Camb). 2023; 59(10):1274-1284.
PMID: 36633152 PMC: 9890500. DOI: 10.1039/d2cc05907j.