» Articles » PMID: 34077760

Large-scale Machine-learning-based Phenotyping Significantly Improves Genomic Discovery for Optic Nerve Head Morphology

Abstract

Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant (GWS; p ≤ 5 × 10) hits in 156 loci. The ML-based GWAS replicated 62 of 65 GWS loci from a recent VCDR GWAS in the UKB for which two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance of the novel hits to VCDR: select loci near genes involved in neuronal and synaptic biology or harboring variants are known to cause severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and primary open-angle glaucoma in the independent EPIC-Norfolk cohort.

Citing Articles

Multi-omic spatial effects on high-resolution AI-derived retinal thickness.

Jackson V, Wu Y, Bonelli R, Owen J, Scott L, Farashi S Nat Commun. 2025; 16(1):1317.

PMID: 39904976 PMC: 11794613. DOI: 10.1038/s41467-024-55635-7.


Pitfalls in performing genome-wide association studies on ratio traits.

McCaw Z, Dey R, Somineni H, Amar D, Mukherjee S, Sandor K HGG Adv. 2025; 6(2):100406.

PMID: 39818621 PMC: 11808723. DOI: 10.1016/j.xhgg.2025.100406.


Prediction, prognosis and monitoring of neurodegeneration at biobank-scale via machine learning and imaging.

Dadu A, Ta M, Tustison N, Daneshmand A, Marek K, Singleton A medRxiv. 2024; .

PMID: 39574848 PMC: 11581077. DOI: 10.1101/2024.10.27.24316215.


Valid inference for machine learning-assisted genome-wide association studies.

Miao J, Wu Y, Sun Z, Miao X, Lu T, Zhao J Nat Genet. 2024; 56(11):2361-2369.

PMID: 39349818 DOI: 10.1038/s41588-024-01934-0.


Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms.

Reis L, Seese S, Costakos D, Semina E Prog Retin Eye Res. 2024; 102:101288.

PMID: 39097141 PMC: 11392650. DOI: 10.1016/j.preteyeres.2024.101288.


References
1.
Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan N, Thompson J . A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017; 36(11):1783-1802. PMC: 5434863. DOI: 10.1002/sim.7221. View

2.
Loh P, Tucker G, Bulik-Sullivan B, Vilhjalmsson B, Finucane H, Salem R . Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015; 47(3):284-90. PMC: 4342297. DOI: 10.1038/ng.3190. View

3.
Sapir T, Sapoznik S, Levy T, Finkelshtein D, Shmueli A, Timm T . Accurate balance of the polarity kinase MARK2/Par-1 is required for proper cortical neuronal migration. J Neurosci. 2008; 28(22):5710-20. PMC: 6670809. DOI: 10.1523/JNEUROSCI.0911-08.2008. View

4.
Craig J, Han X, Qassim A, Hassall M, Cooke Bailey J, Kinzy T . Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet. 2020; 52(2):160-166. PMC: 8056672. DOI: 10.1038/s41588-019-0556-y. View

5.
Garway-Heath D, Rudnicka A, Lowe T, Foster P, Fitzke F, Hitchings R . Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol. 1998; 82(6):643-9. PMC: 1722616. DOI: 10.1136/bjo.82.6.643. View