» Articles » PMID: 34060900

Emergence of Resistance to Novel Cephalosporin-β-Lactamase Inhibitor Combinations Through the Modification of the Pseudomonas Aeruginosa MexCD-OprJ Efflux Pump

Abstract

A ceftolozane-tazobactam- and ceftazime-avibactam-resistant Pseudomonas aeruginosa isolate was recovered after treatment (including azithromycin, meropenem, and ceftolozane-tazobactam) from a patient that had developed ventilator-associated pneumonia after COVID-19 infection. Whole-genome sequencing revealed that the strain, belonging to ST274, had acquired a nonsense mutation leading to truncated carbapenem porin OprD (W277X), a 7-bp deletion (nt213Δ7) in NfxB (negative regulator of the efflux pump MexCD-OprJ), and two missense mutations (Q178R and S133G) located within the first large periplasmic loop of MexD. Through the construction of mutants and complementation assays with wild-type , it was evidenced that resistance to the novel cephalosporin-β-lactamase inhibitor combinations was caused by the modification of MexD substrate specificity.

Citing Articles

Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition.

Kavanaugh L, Mahoney A, Dey D, Wuest W, Conn G NPJ Antimicrob Resist. 2025; 1(1):12.

PMID: 39843773 PMC: 11721654. DOI: 10.1038/s44259-023-00013-4.


Characterization of acquired β-lactamases in and quantification of their contributions to resistance.

Glen K, Lamont I Microbiol Spectr. 2024; 12(10):e0069424.

PMID: 39248479 PMC: 11448201. DOI: 10.1128/spectrum.00694-24.


Efflux pump-mediated resistance to new beta lactam antibiotics in multidrug-resistant gram-negative bacteria.

Chiang A, Dekker J Commun Med (Lond). 2024; 4(1):170.

PMID: 39210044 PMC: 11362173. DOI: 10.1038/s43856-024-00591-y.


development of resistance against antipseudomonal agents: comparison of novel β-lactam/β-lactamase inhibitor combinations and other β-lactam agents.

Castanheira M, Kimbrough J, Lindley J, Doyle T, Ewald J, Sader H Antimicrob Agents Chemother. 2024; 68(5):e0136323.

PMID: 38526050 PMC: 11064483. DOI: 10.1128/aac.01363-23.


Drug Discovery in the Field of β-Lactams: An Academic Perspective.

Jacobs L, Consol P, Chen Y Antibiotics (Basel). 2024; 13(1).

PMID: 38247618 PMC: 10812508. DOI: 10.3390/antibiotics13010059.


References
1.
Cabot G, Bruchmann S, Mulet X, Zamorano L, Moya B, Juan C . Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014; 58(6):3091-9. PMC: 4068469. DOI: 10.1128/AAC.02462-13. View

2.
Slater C, Winogrodzki J, Fraile-Ribot P, Oliver A, Khajehpour M, Mark B . Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam. Antimicrob Agents Chemother. 2020; 64(9). PMC: 7449160. DOI: 10.1128/AAC.00894-20. View

3.
Gillis R, White K, Choi K, Wagner V, Schweizer H, Iglewski B . Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2005; 49(9):3858-67. PMC: 1195439. DOI: 10.1128/AAC.49.9.3858-3867.2005. View

4.
Fraile-Ribot P, Zamorano L, Orellana R, Barrio-Tofino E, Sanchez-Diener I, Cortes-Lara S . Activity of Imipenem-Relebactam against a Large Collection of Pseudomonas aeruginosa Clinical Isolates and Isogenic β-Lactam-Resistant Mutants. Antimicrob Agents Chemother. 2019; 64(2). PMC: 6985745. DOI: 10.1128/AAC.02165-19. View

5.
Gotoh N, Kusumi T, Tsujimoto H, Wada T, Nishino T . Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa. FEBS Lett. 1999; 458(1):32-6. DOI: 10.1016/s0014-5793(99)01116-3. View