» Articles » PMID: 34060564

Electrocatalysis As an Enabling Technology for Organic Synthesis

Overview
Journal Chem Soc Rev
Specialty Chemistry
Date 2021 Jun 1
PMID 34060564
Citations 116
Authors
Affiliations
Soon will be listed here.
Abstract

Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.

Citing Articles

Electrochemical cobalt-catalyzed semi-deuteration of alkynes to access deuterated Z-alkenes.

Feng W, Chang Z, Lu X, Fu Y Nat Commun. 2025; 16(1):2390.

PMID: 40064911 PMC: 11893763. DOI: 10.1038/s41467-025-57782-x.


Recent advances in electrochemical copper catalysis for modern organic synthesis.

Kim Y, Jang W Beilstein J Org Chem. 2025; 21():155-178.

PMID: 39834892 PMC: 11744695. DOI: 10.3762/bjoc.21.9.


Light-harvesting microelectronic devices for wireless electrosynthesis.

Gorski B, Rein J, Norris S, Ji Y, McEuen P, Lin S Nature. 2025; 637(8045):354-361.

PMID: 39780010 DOI: 10.1038/s41586-024-08373-1.


The Future of Electro-organic Synthesis in Drug Discovery and Early Development.

Stephen H, Rockl J ACS Org Inorg Au. 2024; 4(6):571-578.

PMID: 39649998 PMC: 11621954. DOI: 10.1021/acsorginorgau.4c00068.


Modified Working Electrodes for Organic Electrosynthesis.

Reidell A, Pazder K, LeBarron C, Stewart S, Hosseini S ACS Org Inorg Au. 2024; 4(6):579-603.

PMID: 39649987 PMC: 11621959. DOI: 10.1021/acsorginorgau.4c00050.


References
1.
Goes S, Mayer M, Nutting J, Hoober-Burkhardt L, Stahl S, Rafiee M . Deriving the Turnover Frequency of Aminoxyl-Catalyzed Alcohol Oxidation by Chronoamperometry: An Introduction to Organic Electrocatalysis. J Chem Educ. 2021; 98(2):600-606. PMC: 8345316. DOI: 10.1021/acs.jchemed.0c01244. View

2.
Hickey D, Lim K, Cai R, Patterson A, Yuan M, Sahin S . Pyrene hydrogel for promoting direct bioelectrochemistry: ATP-independent electroenzymatic reduction of N. Chem Sci. 2018; 9(23):5172-5177. PMC: 6000982. DOI: 10.1039/c8sc01638k. View

3.
Metodiewa D, Skolimowski J, Karolczak S . Tempace and troxyl-novel synthesized 2,2,6,6-tetramethylpiperidine derivatives as antioxidants and radioprotectors. Biochem Mol Biol Int. 1996; 40(6):1211-9. DOI: 10.1080/15216549600201853. View

4.
de Franca K, Navarro M, Leonel E, Durandetti M, Nedelec J . Electrochemical homocoupling of 2-bromomethylpyridines catalyzed by nickel complexes. J Org Chem. 2002; 67(6):1838-42. DOI: 10.1021/jo016280y. View

5.
Wang F, Stahl S . Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp )-H Bonds. Angew Chem Int Ed Engl. 2019; 58(19):6385-6390. PMC: 6482061. DOI: 10.1002/anie.201813960. View