» Articles » PMID: 29431449

Ni-Catalyzed Electrochemical Decarboxylative C-C Couplings in Batch and Continuous Flow

Overview
Journal Org Lett
Specialties Biochemistry
Chemistry
Date 2018 Feb 13
PMID 29431449
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

An electrochemically driven, nickel-catalyzed reductive coupling of N-hydroxyphthalimide esters with aryl halides is reported. The reaction proceeds under mild conditions in a divided electrochemical cell and employs a tertiary amine as the reductant. This decarboxylative C(sp)-C(sp) bond-forming transformation exhibits excellent substrate generality and functional group compatibility. An operationally simple continuous-flow version of this transformation using a commercial electrochemical flow reactor represents a robust and scalable synthesis of value added coupling process.

Citing Articles

Enantioselective reductive cross-couplings to forge C(sp)-C(sp) bonds by merging electrochemistry with nickel catalysis.

Wang Y, Sun B, Guo J, Zhu X, Gu Y, Han Y Nat Commun. 2025; 16(1):1108.

PMID: 39875390 PMC: 11775263. DOI: 10.1038/s41467-025-56377-w.


The Future of Electro-organic Synthesis in Drug Discovery and Early Development.

Stephen H, Rockl J ACS Org Inorg Au. 2024; 4(6):571-578.

PMID: 39649998 PMC: 11621954. DOI: 10.1021/acsorginorgau.4c00068.


Electrochemical Glycosylation via Halogen-Atom-Transfer for -Glycoside Assembly.

Wu J, Purushothaman R, Kallert F, Homolle S, Ackermann L ACS Catal. 2024; 14(15):11532-11544.

PMID: 39114086 PMC: 11301629. DOI: 10.1021/acscatal.4c02322.


Homogeneous Organic Reductant Based on 4,4'-Bu-2,2'-Bipyridine for Cross-Electrophile Coupling.

Charboneau D, Huang H, Barth E, Deziel A, Germe C, Hazari N Tetrahedron Lett. 2024; 145.

PMID: 39036418 PMC: 11258959. DOI: 10.1016/j.tetlet.2024.155159.


Mechanisms for radical reactions initiating from -hydroxyphthalimide esters.

Azpilcueta-Nicolas C, Lumb J Beilstein J Org Chem. 2024; 20:346-378.

PMID: 38410775 PMC: 10896223. DOI: 10.3762/bjoc.20.35.


References
1.
Tasker S, Standley E, Jamison T . Recent advances in homogeneous nickel catalysis. Nature. 2014; 509(7500):299-309. PMC: 4344729. DOI: 10.1038/nature13274. View

2.
Fu G . Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to S1 and S2 Processes. ACS Cent Sci. 2017; 3(7):692-700. PMC: 5532721. DOI: 10.1021/acscentsci.7b00212. View

3.
Pletcher D, Green R, Brown R . Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chem Rev. 2017; 118(9):4573-4591. DOI: 10.1021/acs.chemrev.7b00360. View

4.
Zuo Z, Ahneman D, Chu L, Terrett J, Doyle A, MacMillan D . Dual catalysis. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp³-carbons with aryl halides. Science. 2014; 345(6195):437-40. PMC: 4296524. DOI: 10.1126/science.1255525. View

5.
Durandetti M, Nedelec J, Perichon J . Nickel-Catalyzed Direct Electrochemical Cross-Coupling between Aryl Halides and Activated Alkyl Halides. J Org Chem. 1996; 61(5):1748-1755. DOI: 10.1021/jo9518314. View