» Articles » PMID: 34031390

PPDPF Alleviates Hepatic Steatosis Through Inhibition of MTOR Signaling

Abstract

Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease in the world, however, no drug treatment has been approved for this disease. Thus, it is urgent to find effective therapeutic targets for clinical intervention. In this study, we find that liver-specific knockout of PPDPF (PPDPF-LKO) leads to spontaneous fatty liver formation in a mouse model at 32 weeks of age on chow diets, which is enhanced by HFD. Mechanistic study reveals that PPDPF negatively regulates mTORC1-S6K-SREBP1 signaling. PPDPF interferes with the interaction between Raptor and CUL4B-DDB1, an E3 ligase complex, which prevents ubiquitination and activation of Raptor. Accordingly, liver-specific PPDPF overexpression effectively inhibits HFD-induced mTOR signaling activation and hepatic steatosis in mice. These results suggest that PPDPF is a regulator of mTORC1 signaling in lipid metabolism, and may be a potential therapeutic candidate for NAFLD.

Citing Articles

Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease.

Chen R, Petrazzini B, Duffy A, Rocheleau G, Jordan D, Bansal M Genome Biol. 2025; 26(1):50.

PMID: 40065360 PMC: 11892324. DOI: 10.1186/s13059-025-03518-5.


PPDPF-mediated regulation of BCAA metabolism enhances mTORC1 activity and drives cholangiocarcinoma progression.

Li Z, Guan Y, Gao J, Zhu L, Zeng Z, Jing Q Oncogene. 2025; .

PMID: 40025229 DOI: 10.1038/s41388-025-03320-4.


Ubiquitination and Metabolic Disease.

Ma M, Cao R, Tian Y, Fu X Adv Exp Med Biol. 2024; 1466:47-79.

PMID: 39546135 DOI: 10.1007/978-981-97-7288-9_4.


Mechanism of Metabolic Dysfunction-associated Steatotic Liver Disease: Important role of lipid metabolism.

Feng X, Zhang R, Yang Z, Zhang K, Xing J J Clin Transl Hepatol. 2024; 12(9):815-826.

PMID: 39280069 PMC: 11393839. DOI: 10.14218/JCTH.2024.00019.


Exercise, mTOR Activation, and Potential Impacts on the Liver in Rodents.

Onaka G, Carvalho M, Onaka P, Barbosa C, Martinez P, de Oliveira-Junior S Biology (Basel). 2024; 13(6).

PMID: 38927242 PMC: 11201249. DOI: 10.3390/biology13060362.


References
1.
Wang Y, Viscarra J, Kim S, Sul H . Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015; 16(11):678-89. PMC: 4884795. DOI: 10.1038/nrm4074. View

2.
Steen V, Skrede S, Polushina T, Lopez M, Andreassen O, Ferno J . Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. Eur Neuropsychopharmacol. 2016; 27(6):589-598. DOI: 10.1016/j.euroneuro.2016.07.011. View

3.
Anstee Q, Reeves H, Kotsiliti E, Govaere O, Heikenwalder M . From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019; 16(7):411-428. DOI: 10.1038/s41575-019-0145-7. View

4.
Kim J, Guan K . mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol. 2019; 21(1):63-71. DOI: 10.1038/s41556-018-0205-1. View

5.
Ghosh P, Wu M, Zhang H, Sun H . mTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase. Cell Cycle. 2008; 7(3):373-81. DOI: 10.4161/cc.7.3.5267. View