» Articles » PMID: 34028761

Plastid Genomes of Flowering Plants: Essential Principles

Overview
Specialty Molecular Biology
Date 2021 May 24
PMID 34028761
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.

Citing Articles

Phylogenetic position and plastid genome structure of , a mycoheterotrophic genus of Orchidaceae (subtribe Orchidinae) endemic to Vietnam.

Samigullin T, Logacheva M, Averyanov L, Zeng S, Fu L, Nuraliev M Front Plant Sci. 2024; 15:1393225.

PMID: 38855461 PMC: 11157612. DOI: 10.3389/fpls.2024.1393225.


Comparative Analysis of Chloroplast Genomes for the Genus Blume (Magnoliaceae): Molecular Structure and Phylogenetic Evolution.

Li T, Zhang S, Deng Y, Li Y Genes (Basel). 2024; 15(4).

PMID: 38674341 PMC: 11048997. DOI: 10.3390/genes15040406.


Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae).

Park S, An B, Park S BMC Plant Biol. 2024; 24(1):303.

PMID: 38644497 PMC: 11034061. DOI: 10.1186/s12870-024-05025-4.


Intrageneric structural variation in organelle genomes from the genus (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer.

Park S, Park S Front Plant Sci. 2023; 14:1283292.

PMID: 38116150 PMC: 10728875. DOI: 10.3389/fpls.2023.1283292.


More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae).

Kohler M, Reginato M, Jin J, Majure L Ann Bot. 2023; 132(4):771-786.

PMID: 37467174 PMC: 10799996. DOI: 10.1093/aob/mcad098.


References
1.
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T . Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A. 2002; 99(19):12246-51. PMC: 129430. DOI: 10.1073/pnas.182432999. View

2.
Timmis J, Ayliffe M, Huang C, Martin W . Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004; 5(2):123-35. DOI: 10.1038/nrg1271. View

3.
Stegemann S, Hartmann S, Ruf S, Bock R . High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A. 2003; 100(15):8828-33. PMC: 166398. DOI: 10.1073/pnas.1430924100. View

4.
Sheppard A, Madesis P, Lloyd A, Day A, Ayliffe M, Timmis J . Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus. Plant Mol Biol. 2011; 76(3-5):299-309. DOI: 10.1007/s11103-011-9764-2. View

5.
Jansen R, Cai Z, Raubeson L, Daniell H, dePamphilis C, Leebens-Mack J . Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A. 2007; 104(49):19369-74. PMC: 2148296. DOI: 10.1073/pnas.0709121104. View