» Articles » PMID: 34021238

Genome-wide CRISPR/Cas9 Deletion Screen Defines Mitochondrial Gene Essentiality and Identifies Routes for Tumour Cell Viability in Hypoxia

Overview
Journal Commun Biol
Specialty Biology
Date 2021 May 22
PMID 34021238
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria are typically essential for the viability of eukaryotic cells, and utilize oxygen and nutrients (e.g. glucose) to perform key metabolic functions that maintain energetic homeostasis and support proliferation. Here we provide a comprehensive functional annotation of mitochondrial genes that are essential for the viability of a large panel (625) of tumour cell lines. We perform genome-wide CRISPR/Cas9 deletion screening in normoxia-glucose, hypoxia-glucose and normoxia-galactose conditions, and identify both unique and overlapping genes whose loss influences tumour cell viability under these different metabolic conditions. We discover that loss of certain oxidative phosphorylation (OXPHOS) genes (e.g. SDHC) improves tumour cell growth in hypoxia-glucose, but reduces growth in normoxia, indicating a metabolic switch in OXPHOS gene function. Moreover, compared to normoxia-glucose, loss of genes involved in energy-consuming processes that are energetically demanding, such as translation and actin polymerization, improve cell viability under both hypoxia-glucose and normoxia-galactose. Collectively, our study defines mitochondrial gene essentiality in tumour cells, highlighting that essentiality is dependent on the metabolic environment, and identifies routes for regulating tumour cell viability in hypoxia.

Citing Articles

Large-scale copy number alterations are enriched for synthetic viability in BRCA1/BRCA2 tumors.

Zhu Y, Pei X, Novaj A, Setton J, Bronder D, Derakhshan F Genome Med. 2024; 16(1):108.

PMID: 39198848 PMC: 11351199. DOI: 10.1186/s13073-024-01371-y.


The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells.

Yang J, Fang J, Singh S, Wells B, Wu Q, Jin H Res Sq. 2024; .

PMID: 38853928 PMC: 11160912. DOI: 10.21203/rs.3.rs-4390765/v1.


Design of hypoxia responsive CRISPR-Cas9 for target gene regulation.

An Y, Talwar C, Park K, Ahn W, Lee S, Go S Sci Rep. 2023; 13(1):16763.

PMID: 37798384 PMC: 10556097. DOI: 10.1038/s41598-023-43711-9.


Examining Sporadic Cancer Mutations Uncovers a Set of Genes Involved in Mitochondrial Maintenance.

Moreno A, Taffet A, Tjahjono E, Anderson Q, Kirienko N Genes (Basel). 2023; 14(5).

PMID: 37239369 PMC: 10218105. DOI: 10.3390/genes14051009.


To metabolomics and beyond: a technological portfolio to investigate cancer metabolism.

Danzi F, Pacchiana R, Mafficini A, Scupoli M, Scarpa A, Donadelli M Signal Transduct Target Ther. 2023; 8(1):137.

PMID: 36949046 PMC: 10033890. DOI: 10.1038/s41392-023-01380-0.


References
1.
Galkin A, Abramov A, Frakich N, Duchen M, Moncada S . Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury?. J Biol Chem. 2009; 284(52):36055-36061. PMC: 2794721. DOI: 10.1074/jbc.M109.054346. View

2.
Iommarini L, Kurelac I, Capristo M, Calvaruso M, Giorgio V, Bergamini C . Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet. 2013; 23(6):1453-66. DOI: 10.1093/hmg/ddt533. View

3.
Doncheva N, Morris J, Gorodkin J, Jensen L . Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res. 2018; 18(2):623-632. PMC: 6800166. DOI: 10.1021/acs.jproteome.8b00702. View

4.
Fukuda R, Zhang H, Kim J, Shimoda L, Dang C, Semenza G . HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007; 129(1):111-22. DOI: 10.1016/j.cell.2007.01.047. View

5.
Kurokawa H, Ito H, Inoue M, Tabata K, Sato Y, Yamagata K . High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime. Sci Rep. 2015; 5:10657. PMC: 4464287. DOI: 10.1038/srep10657. View