» Articles » PMID: 34021131

DNA Origami Single Crystals with Wulff Shapes

Overview
Journal Nat Commun
Specialty Biology
Date 2021 May 22
PMID 34021131
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

DNA origami technology has proven to be an excellent tool for precisely manipulating molecules and colloidal elements in a three-dimensional manner. However, fabrication of single crystals with well-defined facets from highly programmable, complex DNA origami units is a great challenge. Here, we report the successful fabrication of DNA origami single crystals with Wulff shapes and high yield. By regulating the symmetries and binding modes of the DNA origami building blocks, the crystalline shapes can be designed and well-controlled. The single crystals are then used to induce precise growth of an ultrathin layer of silica on the edges, resulting in mechanically reinforced silica-DNA hybrid structures that preserve the details of the single crystals without distortion. The silica-infused microcrystals can be directly observed in the dry state, which allows meticulous analysis of the crystal facets and tomographic 3D reconstruction of the single crystals by high-resolution electron microscopy.

Citing Articles

Generative design-enabled exploration of wireframe DNA origami nanostructures.

Vetturini A, Cagan J, Taylor R Nucleic Acids Res. 2024; 53(2.

PMID: 39739844 PMC: 11754647. DOI: 10.1093/nar/gkae1268.


DNA origami-designed 3D phononic crystals.

Park S, Park H, Nam J, Ke Y, Liedl T, Tian Y Nanophotonics. 2024; 12(13):2611-2621.

PMID: 39633742 PMC: 11501301. DOI: 10.1515/nanoph-2023-0024.


Crystalline Assemblies of DNA Nanostructures and Their Functional Properties.

Li X, Wang J, Baptist A, Wu W, Heuer-Jungemann A, Zhang T Angew Chem Int Ed Engl. 2024; 64(3):e202416948.

PMID: 39576670 PMC: 11735872. DOI: 10.1002/anie.202416948.


Recycling Materials for Sustainable DNA Origami Manufacturing.

Neuhoff M, Wang Y, Vantangoli N, Poirier M, Castro C, Pfeifer W Nano Lett. 2024; 24(39):12080-12087.

PMID: 39315689 PMC: 11451448. DOI: 10.1021/acs.nanolett.4c02695.


Symmetry-Guided Inverse Design of Self-Assembling Multiscale DNA Origami Tilings.

Hayakawa D, Videbaek T, Grason G, Rogers W ACS Nano. 2024; 18(29):19169-19178.

PMID: 38981100 PMC: 11271658. DOI: 10.1021/acsnano.4c04515.


References
1.
Liu X, Zhang F, Jing X, Pan M, Liu P, Li W . Complex silica composite nanomaterials templated with DNA origami. Nature. 2018; 559(7715):593-598. DOI: 10.1038/s41586-018-0332-7. View

2.
Auyeung E, Macfarlane R, Choi C, Cutler J, Mirkin C . Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv Mater. 2012; 24(38):5181-6. DOI: 10.1002/adma.201202069. View

3.
Rahbani J, Hsu J, Chidchob P, Sleiman H . Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami. Nanoscale. 2018; 10(29):13994-13999. DOI: 10.1039/c8nr03185a. View

4.
Ross M, Ku J, Vaccarezza V, Schatz G, Mirkin C . Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat Nanotechnol. 2015; 10(5):453-8. DOI: 10.1038/nnano.2015.68. View

5.
Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Hogele A . DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature. 2012; 483(7389):311-4. DOI: 10.1038/nature10889. View