» Articles » PMID: 34014531

Glucose Metabolism in Cancer: The Warburg Effect and Beyond

Overview
Date 2021 May 20
PMID 34014531
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].

Citing Articles

DIA/SWATH-Mass Spectrometry Revealing Melanoma Cell Proteome Transformations with Silver Nanoparticles: An Innovative Comparative Study.

Martano S, Faktor J, Kote S, Cascione M, Di Corato R, Faktorova D Int J Mol Sci. 2025; 26(5).

PMID: 40076651 PMC: 11901134. DOI: 10.3390/ijms26052029.


Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance.

Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma H Cancer Drug Resist. 2025; 8:7.

PMID: 40051496 PMC: 11883236. DOI: 10.20517/cdr.2024.164.


Analysing glycolysis-related genes reveals the prognostic and diagnostic relevance of IER3 and AGRN in colorectal cancer.

Dalali S, Kaviani F, Mahdevar M, Oroujalian A, Peymani M Genes Genomics. 2025; .

PMID: 40048143 DOI: 10.1007/s13258-025-01618-x.


Tanshinone IIA Suppresses the Proliferation of MGC803 Cells by Disrupting Glycolysis Under Anaerobic Conditions.

Liu Z, Wang Y, Gao X, Ma J, Hui C, Wang C Appl Biochem Biotechnol. 2025; .

PMID: 40009338 DOI: 10.1007/s12010-025-05205-4.


Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections.

Rojas-Pirela M, Andrade-Alviarez D, Rojas V, Marcos M, Salete-Granado D, Chacon-Arnaude M Open Biol. 2025; 15(2):240239.

PMID: 39904372 PMC: 11793985. DOI: 10.1098/rsob.240239.


References
1.
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A . Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008; 7(1):110-20. DOI: 10.1158/1535-7163.MCT-07-0482. View

2.
Yu Y, Deck J, Hunsaker L, Deck L, Royer R, Goldberg E . Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochem Pharmacol. 2001; 62(1):81-9. DOI: 10.1016/s0006-2952(01)00636-0. View

3.
Schoors S, De Bock K, Cantelmo A, Georgiadou M, Ghesquiere B, Cauwenberghs S . Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2013; 19(1):37-48. DOI: 10.1016/j.cmet.2013.11.008. View

4.
Manerba M, Vettraino M, Fiume L, Di Stefano G, Sartini A, Giacomini E . Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase. ChemMedChem. 2011; 7(2):311-7. DOI: 10.1002/cmdc.201100471. View

5.
Doherty J, Cleveland J . Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013; 123(9):3685-92. PMC: 3754272. DOI: 10.1172/JCI69741. View