» Articles » PMID: 34014381

Radiomics and Deep Learning Methods in Expanding the Use of Screening Breast MRI

Overview
Journal Eur Radiol
Specialty Radiology
Date 2021 May 20
PMID 34014381
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

• The use of screening breast MRI is expanding beyond high-risk women to include intermediate- and average-risk women.• The study by Pötsch et al uses a radiomics-based method to decrease the number of benign biopsies while maintaining high sensitivity.• Future studies will likely increasingly focus on deep learning methods and abbreviated MRI data.

Citing Articles

An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis.

Elahi R, Nazari M Radiol Phys Technol. 2024; 17(4):795-818.

PMID: 39285146 DOI: 10.1007/s12194-024-00842-6.


False-positive incidental lesions detected on contrast-enhanced breast MRI: clinical and imaging features.

Alikhassi A, Li X, Au F, Kulkarni S, Ghai S, Allison G Breast Cancer Res Treat. 2023; 198(2):321-334.

PMID: 36740611 DOI: 10.1007/s10549-023-06861-y.


Improving breast cancer diagnostics with deep learning for MRI.

Witowski J, Heacock L, Reig B, Kang S, Lewin A, Pysarenko K Sci Transl Med. 2022; 14(664):eabo4802.

PMID: 36170446 PMC: 10323699. DOI: 10.1126/scitranslmed.abo4802.


Pretreatment DCE-MRI-Based Deep Learning Outperforms Radiomics Analysis in Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer.

Peng Y, Cheng Z, Gong C, Zheng C, Zhang X, Wu Z Front Oncol. 2022; 12:846775.

PMID: 35359387 PMC: 8960929. DOI: 10.3389/fonc.2022.846775.


Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence.

Satake H, Ishigaki S, Ito R, Naganawa S Radiol Med. 2021; 127(1):39-56.

PMID: 34704213 DOI: 10.1007/s11547-021-01423-y.