» Articles » PMID: 34001525

Early Diagnosis and Screening for Lung Cancer

Overview
Specialty General Medicine
Date 2021 May 18
PMID 34001525
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer interception refers to actively blocking the cancer development process by preventing progression of premalignancy to invasive disease. The rate-limiting steps for effective lung cancer interception are the incomplete understanding of the earliest molecular events associated with lung carcinogenesis, the lack of preclinical models of pulmonary premalignancy, and the challenge of developing highly sensitive and specific methods for early detection. Recent advances in cancer interception are facilitated by developments in next-generation sequencing, computational methodologies, as well as the renewed emphasis in precision medicine and immuno-oncology. This review summarizes the current state of knowledge in the areas of molecular abnormalities in lung cancer continuum, preclinical human models of lung cancer pathogenesis, and the advances in early lung cancer diagnostics.

Citing Articles

Development and validation of a tumor marker-based model for the prediction of lung cancer: an analysis of a multicenter retrospective study in Shanghai, China.

Hu S, Guo Q, Ye J, Ma H, Zhang M, Wang Y Front Oncol. 2024; 14:1427170.

PMID: 39544305 PMC: 11562644. DOI: 10.3389/fonc.2024.1427170.


Premalignant Progression in the Lung: Knowledge Gaps and Novel Opportunities for Interception of Non-Small Cell Lung Cancer. An Official American Thoracic Society Research Statement.

Moghaddam S, Savai R, Salehi-Rad R, Sengupta S, Kammer M, Massion P Am J Respir Crit Care Med. 2024; 210(5):548-571.

PMID: 39115548 PMC: 11389570. DOI: 10.1164/rccm.202406-1168ST.


Machine Learning Model of ResNet50-Ensemble Voting for Malignant-Benign Small Pulmonary Nodule Classification on Computed Tomography Images.

Li W, Yu S, Yang R, Tian Y, Zhu T, Liu H Cancers (Basel). 2023; 15(22).

PMID: 38001677 PMC: 10670717. DOI: 10.3390/cancers15225417.


Serum Insights: Leveraging the Power of miRNA Profiling as an Early Diagnostic Tool for Non-Small Cell Lung Cancer.

Charkiewicz R, Sulewska A, Mroz R, Charkiewicz A, Naumnik W, Kraska M Cancers (Basel). 2023; 15(20).

PMID: 37894277 PMC: 10605272. DOI: 10.3390/cancers15204910.


The MAGE A1-A10 Expression associated with Histopathological Findings of Malignant or Non-Malignant Cells in Peripheral Lung Tumors.

Mastutik G, Rahniayu A, Marhana I, Kurniassari N, Rahaju A, Amin M Asian Pac J Cancer Prev. 2023; 24(7):2329-2335.

PMID: 37505763 PMC: 10676496. DOI: 10.31557/APJCP.2023.24.7.2329.


References
1.
Peeters D, De Laere B, Van den Eynden G, Van Laere S, Rothe F, Ignatiadis M . Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br J Cancer. 2013; 108(6):1358-67. PMC: 3619252. DOI: 10.1038/bjc.2013.92. View

2.
Normanno N, Rossi A, Morabito A, Signoriello S, Bevilacqua S, Di Maio M . Prognostic value of circulating tumor cells' reduction in patients with extensive small-cell lung cancer. Lung Cancer. 2014; 85(2):314-9. DOI: 10.1016/j.lungcan.2014.05.002. View

3.
Sivakumar S, San Lucas F, McDowell T, Lang W, Xu L, Fujimoto J . Genomic Landscape of Atypical Adenomatous Hyperplasia Reveals Divergent Modes to Lung Adenocarcinoma. Cancer Res. 2017; 77(22):6119-6130. PMC: 5774855. DOI: 10.1158/0008-5472.CAN-17-1605. View

4.
Kolinsky M, Stoecklein N, Lambros M, Gil V, Nava Rodrigues D, Carreira S . Genetic Analysis of Circulating Tumour Cells. Recent Results Cancer Res. 2019; 215:57-76. DOI: 10.1007/978-3-030-26439-0_3. View

5.
Aberle D, Adams A, Berg C, Black W, Clapp J, Fagerstrom R . Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011; 365(5):395-409. PMC: 4356534. DOI: 10.1056/NEJMoa1102873. View