» Articles » PMID: 33977326

CRISPR/Cas Systems: Opportunities and Challenges for Crop Breeding

Overview
Journal Plant Cell Rep
Publisher Springer
Date 2021 May 12
PMID 33977326
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Increasing crop production to meet the demands of a growing population depends largely on crop improvement through new plant-breeding techniques (NPBT) such as genome editing. CRISPR/Cas systems are NPBTs that enable efficient target-specific gene editing in crops, which is supposed to accelerate crop breeding in a way that is different from genetically modified (GM) technology. Herein, we review the applications of CRISPR/Cas systems in crop breeding focusing on crop domestication, heterosis, haploid induction, and synthetic biology, and summarize the screening methods of CRISPR/Cas-induced mutations in crops. We highlight the importance of molecular characterization of CRISPR/Cas-edited crops, and pay special attentions to emerging highly specific genome-editing tools such as base editors and prime editors. We also discuss future improvements of CRISPR/Cas systems for crop improvement.

Citing Articles

Enhancing tiny millets through genome editing: current status and future prospects.

Weldemichael M, Gebremedhn H Mol Genet Genomics. 2025; 300(1):22.

PMID: 39982542 DOI: 10.1007/s00438-025-02231-z.


The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs.

Garcia-Oliveira A, Ortiz R, Sarsu F, Rasmussen S, Agre P, Asfaw A Front Plant Sci. 2025; 15:1518123.

PMID: 39980758 PMC: 11839310. DOI: 10.3389/fpls.2024.1518123.


PidTools: Algorithm and web tools for crop pedigree identification analysis.

Zhang Y, Zhao Y, Ma S, Wang R, Zhang C, Tian H Comput Struct Biotechnol J. 2024; 23:2883-2891.

PMID: 39108678 PMC: 11301231. DOI: 10.1016/j.csbj.2024.07.004.


Drought stress in : effects, tolerance mechanism, and its smart reprogramming by using modern biotechnological approaches.

Saini S, Sharma P, Sharma J, Pooja P, Sharma A Physiol Mol Biol Plants. 2024; 30(2):227-247.

PMID: 38623164 PMC: 11016033. DOI: 10.1007/s12298-024-01417-w.


CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology.

Matinvafa M, Makani S, Parsasharif N, Zahed M, Movahed E, Ghiasvand S 3 Biotech. 2023; 13(11):383.

PMID: 37920190 PMC: 10618153. DOI: 10.1007/s13205-023-03786-7.


References
1.
Ainley W, Sastry-Dent L, Welter M, Murray M, Zeitler B, Amora R . Trait stacking via targeted genome editing. Plant Biotechnol J. 2013; 11(9):1126-34. DOI: 10.1111/pbi.12107. View

2.
Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M . Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Commun Biol. 2020; 3(1):44. PMC: 6978410. DOI: 10.1038/s42003-020-0768-9. View

3.
Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan M . RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018; 19(1):1. PMC: 5755456. DOI: 10.1186/s13059-017-1381-1. View

4.
Kunkel J . Nursing management of the head injured patient. Crit Care Update. 1981; 8(3):22-33. View

5.
Anzalone A, Koblan L, Liu D . Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38(7):824-844. DOI: 10.1038/s41587-020-0561-9. View