» Articles » PMID: 33977039

Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion

Overview
Journal Adv Sci (Weinh)
Date 2021 May 12
PMID 33977039
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Phase change materials (PCMs) can alleviate concerns over energy to some extent by reversibly storing a tremendous amount of renewable and sustainable thermal energy. However, the low thermal conductivity, low electrical conductivity, and weak photoabsorption of pure PCMs hinder their wider applicability and development. To overcome these deficiencies and improve the utilization efficiency of thermal energy, versatile carbon materials have been increasingly considered as supporting materials to construct shape-stabilized composite PCMs. Despite some carbon-based composite PCMs reviews regarding thermal conductivity enhancement, a comprehensive review of carbon-based composite PCMs does not exist. Herein, a systematic overview of recent carbon-based composite PCMs for thermal storage, transfer, conversion (solar-to-thermal, electro-to-thermal and magnetic-to-thermal), and advanced multifunctional applications, including novel metal organic framework (MOF)-derived carbon materials are provided. The current challenges and future opportunities are also highlighted. The authors hope this review can provide in-depth insights and serve as a useful guide for the targeted design of high-performance carbon-based composite PCMs.

Citing Articles

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Meng Y, Zhang J, Li Y, Jiang H, Xie D Molecules. 2025; 30(1.

PMID: 39795224 PMC: 11721100. DOI: 10.3390/molecules30010168.


Carbonaceous Shape-Stabilized Octadecane/Multi-Walled Carbon Nanotube Composite Materials for Enhanced Energy Storage and Electromagnetic Interference Shielding.

Baikousi M, Gioti C, Vasilopoulos K, Drymiskianaki A, Papadakis V, Viskadourakis Z Molecules. 2024; 29(18).

PMID: 39339358 PMC: 11434077. DOI: 10.3390/molecules29184363.


Aerogels for Phase-Change Materials in Functional and Multifunctional Composites: A Review.

Suchorowiec K, Paprota N, Pielichowska K Materials (Basel). 2024; 17(17).

PMID: 39274794 PMC: 11396527. DOI: 10.3390/ma17174405.


Nano-Enhanced Graphite/Phase Change Material/Graphene Composite for Sustainable and Efficient Passive Thermal Management.

Wang J, Mao Y, Miljkovic N Adv Sci (Weinh). 2024; 11(38):e2402190.

PMID: 39119846 PMC: 11481206. DOI: 10.1002/advs.202402190.


Bio-based sunflower carbon/polyethylene glycol shape-stabilized phase change materials for thermal energy storage.

Gao N, Du J, Yang W, Sun B, Li J, Xia T RSC Adv. 2024; 14(33):24141-24151.

PMID: 39101060 PMC: 11294913. DOI: 10.1039/d4ra03208j.


References
1.
Jiang K, Li Q, Fan S . Nanotechnology: spinning continuous carbon nanotube yarns. Nature. 2002; 419(6909):801. DOI: 10.1038/419801a. View

2.
Tang J, Chen X, Zhang L, Yang M, Wang P, Dong W . Alkylated Meso-Macroporous Metal-Organic Framework Hollow Tubes as Nanocontainers of Octadecane for Energy Storage and Thermal Regulation. Small. 2018; 14(35):e1801970. DOI: 10.1002/smll.201801970. View

3.
Kim H, Lee D, Kim J, Kim T, Kim W . Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano. 2013; 7(8):6735-46. DOI: 10.1021/nn403096s. View

4.
Zhang L, Li R, Tang B, Wang P . Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale. 2016; 8(30):14600-7. DOI: 10.1039/c6nr03921a. View

5.
Soavi G, Wang G, Rostami H, Purdie D, De Fazio D, Ma T . Broadband, electrically tunable third-harmonic generation in graphene. Nat Nanotechnol. 2018; 13(7):583-588. DOI: 10.1038/s41565-018-0145-8. View