» Articles » PMID: 33976220

Metal-organic Framework Membranes with Single-atomic Centers for Photocatalytic CO and O Reduction

Overview
Journal Nat Commun
Specialty Biology
Date 2021 May 12
PMID 33976220
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The demand for sustainable energy has motivated the development of artificial photosynthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO, O, N) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at the gas-liquid-solid boundary. Here, we report that gas-permeable metal-organic framework (MOF) membranes can modify the electronic structures and catalytic properties of metal single-atoms (SAs) to promote the diffusion, activation, and reduction of gas molecules (e.g. CO O) and produce liquid fuels under visible light and mild conditions. With Ir SAs as active centers, the defect-engineered MOF (e.g. activated NH-UiO-66) particles can reduce CO to HCOOH with an apparent quantum efficiency (AQE) of 2.51% at 420 nm on the gas-liquid-solid reaction interface. With promoted gas diffusion at the porous gas-solid interfaces, the gas-permeable SA/MOF membranes can directly convert humid CO gas into HCOOH with a near-unity selectivity and a significantly increased AQE of 15.76% at 420 nm. A similar strategy can be applied to the photocatalytic O-to-HO conversions, suggesting the wide applicability of our catalyst and reaction interface designs.

Citing Articles

Continuous photo-oxidation of methane to methanol at an atomically tailored reticular gas-solid interface.

Hao Y, Chen L, Liu H, Nie W, Ge X, Li J Nat Commun. 2025; 16(1):747.

PMID: 39820499 PMC: 11739510. DOI: 10.1038/s41467-025-56180-7.


Photocatalytic Semiconductor-Metal Hybrid Nanoparticles: Single-Atom Catalyst Regime Surpasses Metal Tips.

Gigi S, Cohen T, Florio D, Levi A, Stone D, Katoa O ACS Nano. 2025; 19(2):2507-2517.

PMID: 39760373 PMC: 11760151. DOI: 10.1021/acsnano.4c13603.


Synergistic metal halide perovskite@metal-organic framework hybrids for photocatalytic CO reduction.

Sharma S, Jacob N, Grandhi G, Choudhary M, Ippili S, Hathwar V iScience. 2024; 27(10):110924.

PMID: 39346676 PMC: 11439556. DOI: 10.1016/j.isci.2024.110924.


A Multimetal Approach for the Reticulation of Iridium into Metal-Organic Framework Building Units.

Vasile R, Borrallo-Aniceto M, Esteban-Betegon F, Skorynina A, Gomez-Mendoza M, de la Pena OShea V J Am Chem Soc. 2024; 146(37):25824-25831.

PMID: 39228089 PMC: 11421005. DOI: 10.1021/jacs.4c08638.


Carbon Dioxide Capture and Conversion Using Metal-Organic Framework (MOF) Materials: A Comprehensive Review.

Kong F, Chen W Nanomaterials (Basel). 2024; 14(16).

PMID: 39195378 PMC: 11356948. DOI: 10.3390/nano14161340.


References
1.
Trickett C, Gagnon K, Lee S, Gandara F, Burgi H, Yaghi O . Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl. 2015; 54(38):11162-7. DOI: 10.1002/anie.201505461. View

2.
Ran J, Jaroniec M, Qiao S . Cocatalysts in Semiconductor-based Photocatalytic CO Reduction: Achievements, Challenges, and Opportunities. Adv Mater. 2018; 30(7). DOI: 10.1002/adma.201704649. View

3.
Sakimoto K, Wong A, Yang P . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science. 2016; 351(6268):74-7. DOI: 10.1126/science.aad3317. View

4.
Li R, Hu J, Deng M, Wang H, Wang X, Hu Y . Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater. 2014; 26(28):4783-8. DOI: 10.1002/adma.201400428. View

5.
Atsumi S, Higashide W, Liao J . Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009; 27(12):1177-80. DOI: 10.1038/nbt.1586. View