6.
Bai S, Jiang J, Zhang Q, Xiong Y
. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev. 2015; 44(10):2893-939.
DOI: 10.1039/c5cs00064e.
View
7.
Guo S, Zhao Y, Wang C, Jiang H, Cheng G
. A Single-Atomic Noble Metal Enclosed Defective MOF via Cryogenic UV Photoreduction for CO Oxidation with Ultrahigh Efficiency and Stability. ACS Appl Mater Interfaces. 2020; 12(23):26068-26075.
DOI: 10.1021/acsami.0c06898.
View
8.
Irshad M, Ain Q, Zaman M, Aslam M, Kousar N, Asim M
. Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Adv. 2022; 12(12):7009-7039.
PMC: 8982362.
DOI: 10.1039/d1ra08185c.
View
9.
Wei Y, Zhang M, Zou R, Xu Q
. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev. 2020; 120(21):12089-12174.
DOI: 10.1021/acs.chemrev.9b00757.
View
10.
Kuriki R, Sekizawa K, Ishitani O, Maeda K
. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew Chem Int Ed Engl. 2015; 54(8):2406-9.
DOI: 10.1002/anie.201411170.
View
11.
Leskela M, Ritala M
. Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed Engl. 2003; 42(45):5548-54.
DOI: 10.1002/anie.200301652.
View
12.
Yang M, Gao M, Hong M, Ho G
. Visible-to-NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar-Powered Environmental Purification and Fuel Production. Adv Mater. 2018; 30(47):e1802894.
DOI: 10.1002/adma.201802894.
View
13.
Jiao X, Zheng K, Liang L, Li X, Sun Y, Xie Y
. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO photoreduction. Chem Soc Rev. 2020; 49(18):6592-6604.
DOI: 10.1039/d0cs00332h.
View
14.
Tamaki Y, Morimoto T, Koike K, Ishitani O
. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci U S A. 2012; 109(39):15673-8.
PMC: 3465408.
DOI: 10.1073/pnas.1118336109.
View
15.
Jan A, Shin J, Ahn J, Yang S, Yoon K, Son J
. Promotion of Pt/CeO catalyst by hydrogen treatment for low-temperature CO oxidation. RSC Adv. 2022; 9(46):27002-27012.
PMC: 9070415.
DOI: 10.1039/c9ra05965b.
View
16.
Li H, Opgenorth P, Wernick D, Rogers S, Wu T, Higashide W
. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012; 335(6076):1596.
DOI: 10.1126/science.1217643.
View
17.
Xing J, Chen J, Li Y, Yuan W, Zhou Y, Zheng L
. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chemistry. 2014; 20(8):2138-44.
DOI: 10.1002/chem.201303366.
View
18.
Zhao Z, Liu W, Shi Y, Zhang H, Song X, Shang W
. An insight into the reaction mechanism of CO photoreduction catalyzed by atomically dispersed Fe atoms supported on graphitic carbon nitride. Phys Chem Chem Phys. 2021; 23(8):4690-4699.
DOI: 10.1039/d0cp05570k.
View
19.
Wang T, Tao X, Li X, Zhang K, Liu S, Li B
. Synergistic Pd Single Atoms, Clusters, and Oxygen Vacancies on TiO for Photocatalytic Hydrogen Evolution Coupled with Selective Organic Oxidation. Small. 2020; 17(2):e2006255.
DOI: 10.1002/smll.202006255.
View
20.
Zhang L, Long R, Zhang Y, Duan D, Xiong Y, Zhang Y
. Direct Observation of Dynamic Bond Evolution in Single-Atom Pt/C N Catalysts. Angew Chem Int Ed Engl. 2020; 59(15):6224-6229.
DOI: 10.1002/anie.201915774.
View