» Articles » PMID: 33972729

Dynamic Adult Tracheal Plasticity Drives Stem Cell Adaptation to Changes in Intestinal Homeostasis in Drosophila

Overview
Journal Nat Cell Biol
Specialty Cell Biology
Date 2021 May 11
PMID 33972729
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here we uncover a previously unrecognised crosstalk between adult intestinal stem cells in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and intestinal stem cell proliferation following damage. Unexpectedly, reactive oxygen species-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 messenger RNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine-vasculature inter-organ communication programme that is essential to adapt the stem cell response to the proliferative demands of the intestinal epithelium.

Citing Articles

Communication between organs defines their sex-specific shapes.

Rajan A Nature. 2024; 630(8016):307-308.

PMID: 38811778 DOI: 10.1038/d41586-024-01362-4.


The sex of organ geometry.

Blackie L, Gaspar P, Mosleh S, Lushchak O, Kong L, Jin Y Nature. 2024; 630(8016):392-400.

PMID: 38811741 PMC: 11168936. DOI: 10.1038/s41586-024-07463-4.


Disruptions in cell fate decisions and transformed enteroendocrine cells drive intestinal tumorigenesis in Drosophila.

Quintero M, Bangi E Cell Rep. 2023; 42(11):113370.

PMID: 37924517 PMC: 10841758. DOI: 10.1016/j.celrep.2023.113370.


Developmental genetic underpinnings of a symbiosis-associated organ in the fungus-farming ambrosia beetle Euwallacea validus.

Spahr E, Wasef F, Kasson M, Kijimoto T Sci Rep. 2023; 13(1):14014.

PMID: 37640917 PMC: 10462615. DOI: 10.1038/s41598-023-40296-1.


EGFR signaling activates intestinal stem cells by promoting mitochondrial biogenesis and β-oxidation.

Zhang C, Jin Y, Marchetti M, Lewis M, Hammouda O, Edgar B Curr Biol. 2022; 32(17):3704-3719.e7.

PMID: 35896119 PMC: 10117080. DOI: 10.1016/j.cub.2022.07.003.


References
1.
Beumer J, Clevers H . Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development. 2016; 143(20):3639-3649. DOI: 10.1242/dev.133132. View

2.
McCarthy N, Kraiczy J, Shivdasani R . Cellular and molecular architecture of the intestinal stem cell niche. Nat Cell Biol. 2020; 22(9):1033-1041. DOI: 10.1038/s41556-020-0567-z. View

3.
Hageman J, Heinz M, Kretzschmar K, van der Vaart J, Clevers H, Snippert H . Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell. 2020; 54(4):435-446. DOI: 10.1016/j.devcel.2020.07.009. View

4.
Ghabrial A, Luschnig S, Metzstein M, Krasnow M . Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol. 2003; 19:623-47. DOI: 10.1146/annurev.cellbio.19.031403.160043. View

5.
Hayashi S, Kondo T . Development and Function of the Tracheal System. Genetics. 2018; 209(2):367-380. PMC: 5972413. DOI: 10.1534/genetics.117.300167. View