» Articles » PMID: 33940135

GrgA Overexpression Inhibits Chlamydia Trachomatis Growth Through Sigma- and Sigma-dependent Mechanisms

Overview
Journal Microb Pathog
Date 2021 May 3
PMID 33940135
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The obligate intracellular bacterium Chlamydia trachomatis is an important human pathogen with a biphasic developmental cycle comprised of an infectious elementary body (EB) and a replicative reticulate body (RB). Whereas σ, the primary sigma factor, is necessary for transcription of most chlamydial genes throughout the developmental cycle, σ is required for expression of some late genes. We previously showed that the Chlamydia-specific transcription factor GrgA physically interacts with both of these sigma factors and activates transcription from σ- and σ-dependent promoters in vitro. Here, we investigated the organismal functions of GrgA. We show that overexpression of GrgA slows EB-to-RB conversion, decreases RB proliferation, and reduces progeny EB production. In contrast, overexpression of a GrgA variant without the σ-binding domain shows significantly less severe inhibitory effects, while overexpression of a variant without the σ-binding domain demonstrates no adverse effects. These findings indicate that GrgA plays important roles in the expression regulation of both σ-dependent genes and σ-dependent genes during the chlamydial developmental cycle.

Citing Articles

plasmid-encoded protein Pgp2 is a replication initiator with a unique β-hairpin necessary for iteron-binding and plasmid replication.

Wan D, Pan M, Zhong G, Fan H Infect Immun. 2025; 93(3):e0060224.

PMID: 39918305 PMC: 11895440. DOI: 10.1128/iai.00602-24.


plasmid-encoded protein Pgp2 is a replication initiator with a unique β-hairpin necessary for iteron-binding and plasmid replication.

Wan D, Pan M, Zhong G, Fan H bioRxiv. 2024; .

PMID: 39569140 PMC: 11577247. DOI: 10.1101/2024.11.14.623704.


Requirement of GrgA for infectious progeny production, optimal growth, and efficient plasmid maintenance.

Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell J mBio. 2023; 15(1):e0203623.

PMID: 38112466 PMC: 10790707. DOI: 10.1128/mbio.02036-23.


Requirement of GrgA for infectious progeny production, optimal growth, and efficient plasmid maintenance.

Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell J bioRxiv. 2023; .

PMID: 37577610 PMC: 10418237. DOI: 10.1101/2023.08.02.551707.


Robust Heat Shock Response in Lacking a Typical Heat Shock Sigma Factor.

Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K Front Microbiol. 2022; 12:812448.

PMID: 35046926 PMC: 8762339. DOI: 10.3389/fmicb.2021.812448.


References
1.
Seshasayee A, Sivaraman K, Luscombe N . An overview of prokaryotic transcription factors : a summary of function and occurrence in bacterial genomes. Subcell Biochem. 2011; 52:7-23. DOI: 10.1007/978-90-481-9069-0_2. View

2.
Koo I, Stephens R . A developmentally regulated two-component signal transduction system in Chlamydia. J Biol Chem. 2003; 278(19):17314-9. DOI: 10.1074/jbc.M212170200. View

3.
Mueller K, Fields K . Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS One. 2015; 10(8):e0135295. PMC: 4530969. DOI: 10.1371/journal.pone.0135295. View

4.
Wilson A, Tan M . Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis. J Bacteriol. 2002; 184(23):6566-71. PMC: 135440. DOI: 10.1128/JB.184.23.6566-6571.2002. View

5.
Shen L, Feng X, Yuan Y, Luo X, Hatch T, Hughes K . Selective promoter recognition by chlamydial sigma28 holoenzyme. J Bacteriol. 2006; 188(21):7364-77. PMC: 1636291. DOI: 10.1128/JB.01014-06. View