» Articles » PMID: 33932034

BNIP3 Promotes HIF-1α-driven Melanoma Growth by Curbing Intracellular Iron Homeostasis

Abstract

BNIP3 is a mitophagy receptor with context-dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient's survival and depletion of BNIP3 in B16-F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2-mediated downregulation of HIF-1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3-deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4-mediated ferritinophagy, which fostered PHD2-mediated HIF-1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF-1α levels in BNIP3-depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF-1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro-tumorigenic HIF-1α glycolytic program in melanoma cells.

Citing Articles

Suppression of Spry1 reduces HIF1α-dependent glycolysis and impairs angiogenesis in BRAF-mutant cutaneous melanoma.

Montico B, Giurato G, Guerrieri R, Colizzi F, Salvati A, Nassa G J Exp Clin Cancer Res. 2025; 44(1):53.

PMID: 39953610 PMC: 11827140. DOI: 10.1186/s13046-025-03289-8.


The role of mitophagy-related genes in prognosis and immunotherapy of cutaneous melanoma: a comprehensive analysis based on single-cell RNA sequencing and machine learning.

Tian J, Zhang L, Shi K, Yang L Immunol Res. 2025; 73(1):30.

PMID: 39799269 DOI: 10.1007/s12026-025-09593-x.


KPNB1-ATF4 induces BNIP3-dependent mitophagy to drive odontoblastic differentiation in dental pulp stem cells.

Zhang Z, Yang D, Yan X, Qiu Q, Guo J, Qiu L Cell Mol Biol Lett. 2024; 29(1):145.

PMID: 39604846 PMC: 11600598. DOI: 10.1186/s11658-024-00664-9.


Current Insights into the Role of UV Radiation-Induced Oxidative Stress in Melanoma Pathogenesis.

Gieniusz E, Skrzydlewska E, Luczaj W Int J Mol Sci. 2024; 25(21).

PMID: 39519202 PMC: 11546485. DOI: 10.3390/ijms252111651.


Hypoxia-induced BNIP3 facilitates the progression and metastasis of uveal melanoma by driving metabolic reprogramming.

Sun J, Ding J, Yue H, Xu B, Sodhi A, Xue K Autophagy. 2024; 21(1):191-209.

PMID: 39265983 PMC: 11702930. DOI: 10.1080/15548627.2024.2395142.


References
1.
Mgrditchian T, Arakelian T, Paggetti J, Noman M, Viry E, Moussay E . Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc Natl Acad Sci U S A. 2017; 114(44):E9271-E9279. PMC: 5676879. DOI: 10.1073/pnas.1703921114. View

2.
Rinaldi G, Rossi M, Fendt S . Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. 2017; 10(1). DOI: 10.1002/wsbm.1397. View

3.
Sutendra G, Dromparis P, Kinnaird A, Stenson T, Haromy A, Parker J . Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene. 2012; 32(13):1638-50. DOI: 10.1038/onc.2012.198. View

4.
Michalke B, Willkommen D, Venkataramani V . Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Front Chem. 2019; 7:136. PMC: 6426946. DOI: 10.3389/fchem.2019.00136. View

5.
Porporato P, Filigheddu N, Bravo-San Pedro J, Kroemer G, Galluzzi L . Mitochondrial metabolism and cancer. Cell Res. 2017; 28(3):265-280. PMC: 5835768. DOI: 10.1038/cr.2017.155. View