» Articles » PMID: 33927417

Gene Signature Extraction and Cell Identity Recognition at the Single-cell Level with Cell-ID

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2021 Apr 30
PMID 33927417
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Because of the stochasticity associated with high-throughput single-cell sequencing, current methods for exploring cell-type diversity rely on clustering-based computational approaches in which heterogeneity is characterized at cell subpopulation rather than at full single-cell resolution. Here we present Cell-ID, a clustering-free multivariate statistical method for the robust extraction of per-cell gene signatures from single-cell sequencing data. We applied Cell-ID to data from multiple human and mouse samples, including blood cells, pancreatic islets and airway, intestinal and olfactory epithelium, as well as to comprehensive mouse cell atlas datasets. We demonstrate that Cell-ID signatures are reproducible across different donors, tissues of origin, species and single-cell omics technologies, and can be used for automatic cell-type annotation and cell matching across datasets. Cell-ID improves biological interpretation at individual cell level, enabling discovery of previously uncharacterized rare cell types or cell states. Cell-ID is distributed as an open-source R software package.

Citing Articles

stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics.

Zou G, Shen Q, Li L, Zhang S Nucleic Acids Res. 2025; 53(5).

PMID: 40057378 PMC: 11890069. DOI: 10.1093/nar/gkaf158.


Single-Cell RNA Sequencing Reveals Peripheral Immune Cell Senescence and Inflammatory Phenotypes in Patients with Premature Ovarian Failure.

Liu J, Wang L, Zhong W, Cai J, Sun Y, Li S J Inflamm Res. 2025; 18:2699-2715.

PMID: 40026314 PMC: 11871908. DOI: 10.2147/JIR.S496130.


Dissecting tumor cell programs through group biology estimation in clinical single-cell transcriptomics.

Johri S, Bi K, Titchen B, Fu J, Conway J, Crowdis J Nat Commun. 2025; 16(1):2090.

PMID: 40025015 PMC: 11873288. DOI: 10.1038/s41467-025-57377-6.


scGO: interpretable deep neural network for cell status annotation and disease diagnosis.

Wu Y, Xu P, Wang L, Liu S, Hou Y, Lu H Brief Bioinform. 2025; 26(1.

PMID: 39820437 PMC: 11737892. DOI: 10.1093/bib/bbaf018.


Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

Song Y, Wang L, Wang H, Ma H, Xu J, Liu J iScience. 2024; 27(12):111469.

PMID: 39735437 PMC: 11681900. DOI: 10.1016/j.isci.2024.111469.


References
1.
Regev A, Teichmann S, Lander E, Amit I, Benoist C, Birney E . The Human Cell Atlas. Elife. 2017; 6. PMC: 5762154. DOI: 10.7554/eLife.27041. View

2.
Lahnemann D, Koster J, Szczurek E, McCarthy D, Hicks S, Robinson M . Eleven grand challenges in single-cell data science. Genome Biol. 2020; 21(1):31. PMC: 7007675. DOI: 10.1186/s13059-020-1926-6. View

3.
Sun S, Zhu J, Ma Y, Zhou X . Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis. Genome Biol. 2019; 20(1):269. PMC: 6902413. DOI: 10.1186/s13059-019-1898-6. View

4.
Duo A, Robinson M, Soneson C . A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Res. 2020; 7:1141. PMC: 6134335. DOI: 10.12688/f1000research.15666.3. View

5.
Kiselev V, Andrews T, Hemberg M . Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019; 20(5):273-282. DOI: 10.1038/s41576-018-0088-9. View