» Articles » PMID: 33920357

Unsupervised Monocular Depth Estimation for Colonoscope System Using Feedback Network

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2021 Apr 30
PMID 33920357
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A colonoscopy is a medical examination used to check disease or abnormalities in the large intestine. If necessary, polyps or adenomas would be removed through the scope during a colonoscopy. Colorectal cancer can be prevented through this. However, the polyp detection rate differs depending on the condition and skill level of the endoscopist. Even some endoscopists have a 90% chance of missing an adenoma. Artificial intelligence and robot technologies for colonoscopy are being studied to compensate for these problems. In this study, we propose a self-supervised monocular depth estimation using spatiotemporal consistency in the colon environment. It is our contribution to propose a loss function for reconstruction errors between adjacent predicted depths and a depth feedback network that uses predicted depth information of the previous frame to predict the depth of the next frame. We performed quantitative and qualitative evaluation of our approach, and the proposed FBNet (depth FeedBack Network) outperformed state-of-the-art results for unsupervised depth estimation on the UCL datasets.

Citing Articles

Advances in artificial intelligence and computer science for computer-aided diagnosis of colorectal polyps: current status.

van Bokhorst Q, Houwen B, Hazewinkel Y, Fockens P, Dekker E Endosc Int Open. 2023; 11(8):E752-E767.

PMID: 37593158 PMC: 10431975. DOI: 10.1055/a-2098-1999.


Self-supervised monocular depth estimation for high field of view colonoscopy cameras.

Mathew A, Magerand L, Trucco E, Manfredi L Front Robot AI. 2023; 10:1212525.

PMID: 37559569 PMC: 10407791. DOI: 10.3389/frobt.2023.1212525.


An Adaptive Refinement Scheme for Depth Estimation Networks.

Alizadeh Naeini A, Sheikholeslami M, Sohn G Sensors (Basel). 2022; 22(24).

PMID: 36560124 PMC: 9786650. DOI: 10.3390/s22249755.


WPO-Net: Windowed Pose Optimization Network for Monocular Visual Odometry Estimation.

Gadipudi N, Elamvazuthi I, Lu C, Paramasivam S, Su S Sensors (Basel). 2021; 21(23).

PMID: 34884156 PMC: 8662456. DOI: 10.3390/s21238155.


A systematic review on application of deep learning in digestive system image processing.

Zhuang H, Zhang J, Liao F Vis Comput. 2021; 39(6):2207-2222.

PMID: 34744231 PMC: 8557108. DOI: 10.1007/s00371-021-02322-z.


References
1.
Visentini-Scarzanella M, Sugiura T, Kaneko T, Koto S . Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int J Comput Assist Radiol Surg. 2017; 12(7):1089-1099. DOI: 10.1007/s11548-017-1609-2. View

2.
Khan F, Salahuddin S, Javidnia H . Deep Learning-Based Monocular Depth Estimation Methods-A State-of-the-Art Review. Sensors (Basel). 2020; 20(8). PMC: 7219073. DOI: 10.3390/s20082272. View

3.
Rau A, Edwards P, Ahmad O, Riordan P, Janatka M, Lovat L . Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy. Int J Comput Assist Radiol Surg. 2019; 14(7):1167-1176. PMC: 6570710. DOI: 10.1007/s11548-019-01962-w. View

4.
Song C, Qi C, Song S, Xiao F . Unsupervised Monocular Depth Estimation Method Based on Uncertainty Analysis and Retinex Algorithm. Sensors (Basel). 2020; 20(18). PMC: 7570747. DOI: 10.3390/s20185389. View

5.
Freedman D, Blau Y, Katzir L, Aides A, Shimshoni I, Veikherman D . Detecting Deficient Coverage in Colonoscopies. IEEE Trans Med Imaging. 2020; 39(11):3451-3462. DOI: 10.1109/TMI.2020.2994221. View