» Articles » PMID: 33919242

A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology

Overview
Publisher MDPI
Date 2021 Apr 30
PMID 33919242
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.

Citing Articles

Recent Progress in PDMS-Based Microfluidics Toward Integrated Organ-on-a-Chip Biosensors and Personalized Medicine.

Alghannam F, Alayed M, Alfihed S, Sakr M, Almutairi D, Alshamrani N Biosensors (Basel). 2025; 15(2).

PMID: 39996978 PMC: 11852457. DOI: 10.3390/bios15020076.


Interdisciplinary Animal Research Ethics-Challenges, Opportunities, and Perspectives.

Mertz M, Hetzel T, Alex K, Braun K, Camenzind S, Dodaro R Animals (Basel). 2024; 14(19).

PMID: 39409845 PMC: 11475729. DOI: 10.3390/ani14192896.


Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview.

Alexandre-Franco M, Kouider R, Kassir Al-Karany R, Cuerda-Correa E, Al-Kassir A Micromachines (Basel). 2024; 15(9).

PMID: 39337797 PMC: 11433824. DOI: 10.3390/mi15091137.


Development of a robotic-assisted handling and manipulation system for the high-scale bioproduction of 3D-bioprinted organ-on-a-chip devices.

Lindner N, Mejia-Wille A, Fritschen A, Blaeser A HardwareX. 2024; 19:e00572.

PMID: 39262423 PMC: 11387796. DOI: 10.1016/j.ohx.2024.e00572.


Editorial: Recent advances in cardiotoxicity testing, volume II.

Salama A, Mohamed T Front Pharmacol. 2024; 15:1414373.

PMID: 38741588 PMC: 11089214. DOI: 10.3389/fphar.2024.1414373.


References
1.
Uchino S, Kellum J, Bellomo R, Doig G, Morimatsu H, Morgera S . Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005; 294(7):813-8. DOI: 10.1001/jama.294.7.813. View

2.
Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A . Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng. 2020; 4(4):407-420. PMC: 8057865. DOI: 10.1038/s41551-019-0497-x. View

3.
Maoz B, Herland A, Henry O, Leineweber W, Yadid M, Doyle J . Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip. 2017; 17(13):2294-2302. DOI: 10.1039/c7lc00412e. View

4.
Brown S, Sandhu N, Herrmann J . Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol. 2015; 12(12):718-31. DOI: 10.1038/nrclinonc.2015.168. View

5.
Jackson E, Shoemaker R, Larian N, Cassis L . Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol. 2017; 7(4):1085-1135. PMC: 6101675. DOI: 10.1002/cphy.c160038. View