» Articles » PMID: 33905140

Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds*

Overview
Specialty Chemistry
Date 2021 Apr 27
PMID 33905140
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m  g and 1.84 cm  g . Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.

Citing Articles

Recent advances in porous organic cages for energy applications.

Liu C, Wang Z, Wang H, Jiang J Chem Sci. 2024; .

PMID: 39483250 PMC: 11523839. DOI: 10.1039/d4sc05309e.


A Water-Stable Boronate Ester Cage.

Kirchner P, Schramm L, Ivanova S, Shoyama K, Wurthner F, Beuerle F J Am Chem Soc. 2024; 146(8):5305-5315.

PMID: 38325811 PMC: 10910528. DOI: 10.1021/jacs.3c12002.


Purely Covalent Molecular Cages and Containers for Guest Encapsulation.

Monta-Gonzalez G, Sancenon F, Martinez-Manez R, Marti-Centelles V Chem Rev. 2022; 122(16):13636-13708.

PMID: 35867555 PMC: 9413269. DOI: 10.1021/acs.chemrev.2c00198.


Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components.

Liu C, Jin Y, Qi D, Ding X, Ren H, Wang H Chem Sci. 2022; 13(23):7014-7020.

PMID: 35774155 PMC: 9200113. DOI: 10.1039/d2sc01876d.


CO Separation by Imide/Imine Organic Cages.

La Cognata S, Mobili R, Milanese C, Boiocchi M, Gaboardi M, Armentano D Chemistry. 2022; 28(49):e202201631.

PMID: 35762229 PMC: 9545214. DOI: 10.1002/chem.202201631.


References
1.
Pulido A, Chen L, Kaczorowski T, Holden D, Little M, Chong S . Functional materials discovery using energy-structure-function maps. Nature. 2017; 543(7647):657-664. PMC: 5458805. DOI: 10.1038/nature21419. View

2.
Mitra T, Jelfs K, Schmidtmann M, Ahmed A, Chong S, Adams D . Molecular shape sorting using molecular organic cages. Nat Chem. 2013; 5(4):276-81. DOI: 10.1038/nchem.1550. View

3.
Beaudoin D, Rominger F, Mastalerz M . Chiral Self-Sorting of [2+3] Salicylimine Cage Compounds. Angew Chem Int Ed Engl. 2016; 56(5):1244-1248. DOI: 10.1002/anie.201610782. View

4.
Sun N, Wang C, Wang H, Yang L, Jin P, Zhang W . Multifunctional Tubular Organic Cage-Supported Ultrafine Palladium Nanoparticles for Sequential Catalysis. Angew Chem Int Ed Engl. 2019; 58(50):18011-18016. DOI: 10.1002/anie.201908703. View

5.
Bera S, Dey K, Pal T, Halder A, Tothadi S, Karak S . Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angew Chem Int Ed Engl. 2019; 58(13):4243-4247. DOI: 10.1002/anie.201813773. View