» Articles » PMID: 33904412

Attenuated Dopamine Signaling After Aversive Learning is Restored by Ketamine to Rescue Escape Actions

Overview
Journal Elife
Specialty Biology
Date 2021 Apr 27
PMID 33904412
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Escaping aversive stimuli is essential for complex organisms, but prolonged exposure to stress leads to maladaptive learning. Stress alters neuronal activity and neuromodulatory signaling in distributed networks, modifying behavior. Here, we describe changes in dopaminergic neuron activity and signaling following aversive learning in a learned helplessness paradigm in mice. A single dose of ketamine suffices to restore escape behavior after aversive learning. Dopaminergic neuron activity in the ventral tegmental area (VTA) systematically varies across learning, correlating with future sensitivity to ketamine treatment. Ketamine's effects are blocked by chemogenetic inhibition of dopamine signaling. Rather than directly altering the activity of dopaminergic neurons, ketamine appears to rescue dopamine dynamics through actions in the medial prefrontal cortex (mPFC). Chemogenetic activation of Drd1 receptor positive mPFC neurons mimics ketamine's effects on behavior. Together, our data link neuromodulatory dynamics in mPFC-VTA circuits, aversive learning, and the effects of ketamine.

Citing Articles

How Dopamine Enables Learning from Aversion.

Lopez G, Lerner T Curr Opin Behav Sci. 2024; 61.

PMID: 39719969 PMC: 11666190. DOI: 10.1016/j.cobeha.2024.101476.


Ketamine induces plasticity in a norepinephrine-astroglial circuit to promote behavioral perseverance.

Duque M, Chen A, Hsu E, Narayan S, Rymbek A, Begum S Neuron. 2024; 113(3):426-443.e5.

PMID: 39694033 PMC: 11889991. DOI: 10.1016/j.neuron.2024.11.011.


Immediate and long-term electrophysiological biomarkers of antidepressant-like behavioral effects after subanesthetic ketamine and medial prefrontal cortex deep brain stimulation treatment.

Bergosh M, Medvidovic S, Zepeda N, Crown L, Ipe J, Debattista L Front Neurosci. 2024; 18:1389096.

PMID: 38966758 PMC: 11222339. DOI: 10.3389/fnins.2024.1389096.


High-throughput mapping of single-neuron projection and molecular features by retrograde barcoded labeling.

Xu P, Peng J, Yuan T, Chen Z, He H, Wu Z Elife. 2024; 13.

PMID: 38390967 PMC: 10914349. DOI: 10.7554/eLife.85419.


Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales.

Ma P, Chen P, Tilden E, Aggarwal S, Oldenborg A, Chen Y Sci Adv. 2024; 10(8):eadi0643.

PMID: 38381826 PMC: 10881037. DOI: 10.1126/sciadv.adi0643.


References
1.
Maeng S, Zarate Jr C, Du J, Schloesser R, McCammon J, Chen G . Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2007; 63(4):349-52. DOI: 10.1016/j.biopsych.2007.05.028. View

2.
Xiao L, Priest M, Nasenbeny J, Lu T, Kozorovitskiy Y . Biased Oxytocinergic Modulation of Midbrain Dopamine Systems. Neuron. 2017; 95(2):368-384.e5. PMC: 7881764. DOI: 10.1016/j.neuron.2017.06.003. View

3.
Lerner T, Shilyansky C, Davidson T, Evans K, Beier K, Zalocusky K . Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell. 2015; 162(3):635-47. PMC: 4790813. DOI: 10.1016/j.cell.2015.07.014. View

4.
Corcos M, Guilbaud O, Speranza M, Paterniti S, Loas G, Stephan P . Alexithymia and depression in eating disorders. Psychiatry Res. 2000; 93(3):263-6. DOI: 10.1016/s0165-1781(00)00109-8. View

5.
Homayoun H, Moghaddam B . NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007; 27(43):11496-500. PMC: 2954603. DOI: 10.1523/JNEUROSCI.2213-07.2007. View