» Articles » PMID: 33891428

Accelerated Hot-Carrier Cooling in MAPbI Perovskite by Pressure-Induced Lattice Compression

Overview
Specialty Chemistry
Date 2021 Apr 23
PMID 33891428
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Hot-carrier cooling (HCC) in metal halide perovskites above the Mott transition is significantly slower than in conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck, but the influence of the lattice properties on the HCC behavior is poorly understood. Using pressure-dependent transient absorption spectroscopy, we find that at an excitation density below the Mott transition, pressure does not affect the HCC. On the contrary, above the Mott transition, HCC in methylammonium lead iodide is around 2-3 times faster at 0.3 GPa than at ambient pressure. Our electron-phonon coupling calculations reveal ∼2-fold stronger electron-phonon coupling for the inorganic cage mode at 0.3 GPa. However, our experiments reveal that pressure promotes faster HCC only above the Mott transition. Altogether, these findings suggest a change in the nature of excited carriers above the Mott transition threshold, providing insights into the electronic behavior of devices operating at such high charge-carrier densities.

Citing Articles

Octahedral units in halide perovskites.

Wang Y, Wang Y, Doherty T, Stranks S, Gao F, Yang D Nat Rev Chem. 2025; .

PMID: 39929968 DOI: 10.1038/s41570-025-00687-6.


Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics.

Ye J, Mondal N, Carwithen B, Zhang Y, Dai L, Fan X Nat Commun. 2024; 15(1):8120.

PMID: 39285179 PMC: 11405528. DOI: 10.1038/s41467-024-52377-4.


Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials.

Carwithen B, Hopper T, Ge Z, Mondal N, Wang T, Mazlumian R ACS Nano. 2023; 17(7):6638-6648.

PMID: 36939330 PMC: 10100565. DOI: 10.1021/acsnano.2c12373.

References
1.
Kawai H, Giorgi G, Marini A, Yamashita K . The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. Nano Lett. 2015; 15(5):3103-8. DOI: 10.1021/acs.nanolett.5b00109. View

2.
Monahan D, Guo L, Lin J, Dou L, Yang P, Fleming G . Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CHNHPbI Perovskite as a Possible Cooling Bottleneck. J Phys Chem Lett. 2017; 8(14):3211-3215. DOI: 10.1021/acs.jpclett.7b01357. View

3.
Price M, Butkus J, Jellicoe T, Sadhanala A, Briane A, Halpert J . Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat Commun. 2015; 6:8420. PMC: 4598728. DOI: 10.1038/ncomms9420. View

4.
Leguy A, Goni A, Frost J, Skelton J, Brivio F, Rodriguez-Martinez X . Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys Chem Chem Phys. 2016; 18(39):27051-27066. DOI: 10.1039/c6cp03474h. View

5.
Frost J, Whalley L, Walsh A . Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells. ACS Energy Lett. 2017; 2(12):2647-2652. PMC: 5727468. DOI: 10.1021/acsenergylett.7b00862. View