» Articles » PMID: 33872372

MiRMaster 2.0: Multi-species Non-coding RNA Sequencing Analyses at Scale

Overview
Specialty Biochemistry
Date 2021 Apr 19
PMID 33872372
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Analyzing all features of small non-coding RNA sequencing data can be demanding and challenging. To facilitate this process, we developed miRMaster. After the analysis of over 125 000 human samples and 1.5 trillion human small RNA reads over 4 years, we present miRMaster 2 with a wide range of updates and new features. We extended our reference data sets so that miRMaster 2 now supports the analysis of eight species (e.g. human, mouse, chicken, dog, cow) and 10 non-coding RNA classes (e.g. microRNAs, piRNAs, tRNAs, rRNAs, circRNAs). We also incorporated new downstream analysis modules such as batch effect analysis or sample embeddings using UMAP, and updated annotation data bases included by default (miRBase, Ensembl, GtRNAdb). To accommodate the increasing popularity of single cell small-RNA sequencing data, we incorporated a module for unique molecular identifier (UMI) processing. Further, the output tables and graphics have been improved based on user feedback and new output formats that emerged in the community are now supported (e.g. miRGFF3). Finally, we integrated differential expression analysis with the miRNA enrichment analysis tool miEAA. miRMaster is freely available at https://www.ccb.uni-saarland.de/mirmaster2.

Citing Articles

Profiling the cell-specific small non-coding RNA transcriptome of the human placenta.

Telkar N, Hui D, Penaherrera M, Yuan V, Martinez V, Stewart G Res Sq. 2025; .

PMID: 39989957 PMC: 11844636. DOI: 10.21203/rs.3.rs-5953518/v1.


miR-449, identified through antiandrogen exposure, mitigates functional biomarkers associated with ovarian cancer risk.

Wang X, Woo H, Wei M, Gibson S, Miranda M, Rush D Sci Rep. 2024; 14(1):29937.

PMID: 39622842 PMC: 11611913. DOI: 10.1038/s41598-024-80173-z.


Quantitative design of cell type-specific mRNA stability from microRNA expression data.

Oesinghaus L, Castillo-Hair S, Ludwig N, Keller A, Seelig G bioRxiv. 2024; .

PMID: 39554011 PMC: 11565874. DOI: 10.1101/2024.10.28.620728.


Post-Transcriptional Modifications to miRNAs Undergo Widespread Alterations, Creating a Unique Lung Adenocarcinoma IsomiRome.

Cohn D, Souza V, Forder A, Telkar N, Stewart G, Lam W Cancers (Basel). 2024; 16(19).

PMID: 39409941 PMC: 11476290. DOI: 10.3390/cancers16193322.


Single Sperm RNA signatures reveal MicroRNA biomarkers for male subfertility.

Abu-Halima M, Fischer U, Smadi M, Ludwig N, Acheli A, Engel A J Assist Reprod Genet. 2024; 41(11):3119-3132.

PMID: 39312032 PMC: 11621271. DOI: 10.1007/s10815-024-03264-w.


References
1.
Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G . Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2018; 20(5):1836-1852. PMC: 7414524. DOI: 10.1093/bib/bby054. View

2.
Glazar P, Papavasileiou P, Rajewsky N . circBase: a database for circular RNAs. RNA. 2014; 20(11):1666-70. PMC: 4201819. DOI: 10.1261/rna.043687.113. View

3.
Koster J, Rahmann S . Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2018; 34(20):3600. DOI: 10.1093/bioinformatics/bty350. View

4.
Langmead B, Trapnell C, Pop M, Salzberg S . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. PMC: 2690996. DOI: 10.1186/gb-2009-10-3-r25. View

5.
Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M . An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019; 47(7):3353-3364. PMC: 6468295. DOI: 10.1093/nar/gkz097. View