» Articles » PMID: 33868800

Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture

Abstract

Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community.

Results: We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all ( = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus , including the newly named species .

Conclusions: Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.

Citing Articles

The multi-kingdom microbiome catalog of the chicken gastrointestinal tract.

Wang Y, Qu M, Bi Y, Liu W, Ma S, Wan B Biosaf Health. 2025; 6(2):101-115.

PMID: 40078943 PMC: 11894977. DOI: 10.1016/j.bsheal.2024.02.006.


Gut Microbiota of Ruminants and Monogastric Livestock: An Overview.

Tardiolo G, La Fauci D, Riggio V, Daghio M, Di Salvo E, Zumbo A Animals (Basel). 2025; 15(5).

PMID: 40076043 PMC: 11899476. DOI: 10.3390/ani15050758.


Expanding the human gut microbiome atlas of Africa.

Maghini D, Oduaran O, Olubayo L, Cook J, Smyth N, Mathema T Nature. 2025; 638(8051):718-728.

PMID: 39880958 PMC: 11839480. DOI: 10.1038/s41586-024-08485-8.


Decoding the chicken gastrointestinal microbiome.

Burrows P, Godoy-Santos F, Lawther K, Richmond A, Corcionivoschi N, Huws S BMC Microbiol. 2025; 25(1):35.

PMID: 39833701 PMC: 11744950. DOI: 10.1186/s12866-024-03690-x.


The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia.

Thibaut M, Roumain M, Piron E, Gillard J, Loriot A, Neyrinck A Gut Microbes. 2025; 17(1):2449586.

PMID: 39780051 PMC: 11730681. DOI: 10.1080/19490976.2025.2449586.


References
1.
Olm M, Brown C, Brooks B, Banfield J . dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017; 11(12):2864-2868. PMC: 5702732. DOI: 10.1038/ismej.2017.126. View

2.
Breitwieser F, Salzberg S . Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics. 2019; 36(4):1303-1304. PMC: 8215911. DOI: 10.1093/bioinformatics/btz715. View

3.
Sakamoto M, Ohkuma M . Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus). Int J Syst Evol Microbiol. 2012; 63(Pt 2):691-695. DOI: 10.1099/ijs.0.040931-0. View

4.
Li D, Luo R, Liu C, Leung C, Ting H, Sadakane K . MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016; 102:3-11. DOI: 10.1016/j.ymeth.2016.02.020. View

5.
Clermont O, Gordon D, Brisse S, Walk S, Denamur E . Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environ Microbiol. 2011; 13(9):2468-77. DOI: 10.1111/j.1462-2920.2011.02519.x. View