» Articles » PMID: 33863238

Vascularized Microfluidics and Their Untapped Potential for Discovery in Diseases of the Microvasculature

Overview
Publisher Annual Reviews
Date 2021 Apr 17
PMID 33863238
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Microengineering advances have enabled the development of perfusable, endothelialized models of the microvasculature that recapitulate the unique biological and biophysical conditions of the microcirculation in vivo. Indeed, at that size scale (<100 μm)-where blood no longer behaves as a simple continuum fluid; blood cells approximate the size of the vessels themselves; and complex interactions among blood cells, plasma molecules, and the endothelium constantly ensue-vascularized microfluidics are ideal tools to investigate these microvascular phenomena. Moreover, perfusable, endothelialized microfluidics offer unique opportunities for investigating microvascular diseases by enabling systematic dissection of both the blood and vascular components of the pathophysiology at hand. We review () the state of the art in microvascular devices and () the myriad of microvascular diseases and pressing challenges. The engineering community has unique opportunities to innovate with new microvascular devices and to partner with biomedical researchers to usher in a new era of understanding and discovery of microvascular diseases.

Citing Articles

Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network.

Belenkovich M, Veksler R, Kreinin Y, Mekler T, Flores M, Sznitman J Micromachines (Basel). 2024; 15(8).

PMID: 39203639 PMC: 11356079. DOI: 10.3390/mi15080988.


Breathing new life into tissue engineering: exploring cutting-edge vascularization strategies for skin substitutes.

Iqbal M, Riaz M, Biedermann T, Klar A Angiogenesis. 2024; 27(4):587-621.

PMID: 38842751 PMC: 11564345. DOI: 10.1007/s10456-024-09928-6.


Vascularized organoid-on-a-chip: design, imaging, and analysis.

Yu T, Yang Q, Peng B, Gu Z, Zhu D Angiogenesis. 2024; 27(2):147-172.

PMID: 38409567 DOI: 10.1007/s10456-024-09905-z.


Revolutionizing the female reproductive system research using microfluidic chip platform.

Yan J, Wu T, Zhang J, Gao Y, Wu J, Wang S J Nanobiotechnology. 2023; 21(1):490.

PMID: 38111049 PMC: 10729361. DOI: 10.1186/s12951-023-02258-7.


Self-assembled and perfusable microvasculature-on-chip for modeling leukocyte trafficking.

Hirth E, Cao W, Peltonen M, Kapetanovic E, Dietsche C, Svanberg S Lab Chip. 2023; 24(2):292-304.

PMID: 38086670 PMC: 10793075. DOI: 10.1039/d3lc00719g.


References
1.
Aird W . Spatial and temporal dynamics of the endothelium. J Thromb Haemost. 2005; 3(7):1392-406. DOI: 10.1111/j.1538-7836.2005.01328.x. View

2.
Brennan M, Rexius-Hall M, Elgass L, Eddington D . Oxygen control with microfluidics. Lab Chip. 2014; 14(22):4305-18. DOI: 10.1039/c4lc00853g. View

3.
Williams E, Oshinowo O, Ravindran A, Lam W, Myers D . Feeling the Force: Measurements of Platelet Contraction and Their Diagnostic Implications. Semin Thromb Hemost. 2018; 45(3):285-296. PMC: 7284283. DOI: 10.1055/s-0038-1676315. View

4.
Li X, Xia J, Nicolescu C, Massidda M, Ryan T, Tien J . Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones. Biofabrication. 2018; 11(1):014101. PMC: 6252090. DOI: 10.1088/1758-5090/aae5fe. View

5.
Qiu Y, Myers D, Lam W . The biophysics and mechanics of blood from a materials perspective. Nat Rev Mater. 2020; 4(5):294-311. PMC: 7238390. DOI: 10.1038/s41578-019-0099-y. View