» Articles » PMID: 33857424

Synthetic Lethality-mediated Precision Oncology Via the Tumor Transcriptome

Abstract

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.

Citing Articles

Advancements in proteogenomics for preclinical targeted cancer therapy research.

Suo Y, Song Y, Wang Y, Liu Q, Rodriguez H, Zhou H Biophys Rep. 2025; 11(1):56-76.

PMID: 40070661 PMC: 11891078. DOI: 10.52601/bpr.2024.240053.


Hallmarks of artificial intelligence contributions to precision oncology.

Chang T, Park S, Schaffer A, Jiang P, Ruppin E Nat Cancer. 2025; .

PMID: 40055572 DOI: 10.1038/s43018-025-00917-2.


PRODE recovers essential and context-essential genes through neighborhood-informed scores.

Cantore T, Gasperini P, Bevilacqua R, Ciani Y, Sinha S, Ruppin E Genome Biol. 2025; 26(1):42.

PMID: 40022167 PMC: 11869679. DOI: 10.1186/s13059-025-03501-0.


Novel post-translational modification learning signature reveals B4GALT2 as an immune exclusion regulator in lung adenocarcinoma.

Zhang P, Wang D, Zhou G, Jiang S, Zhang G, Zhang L J Immunother Cancer. 2025; 13(2).

PMID: 40010763 PMC: 11865799. DOI: 10.1136/jitc-2024-010787.


Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition.

Li H, Furusawa T, Cavero R, Xiao Y, Chari R, Wu X Redox Biol. 2025; 80:103503.

PMID: 39854937 PMC: 11795153. DOI: 10.1016/j.redox.2025.103503.


References
1.
Horak C, Pusztai L, Xing G, Trifan O, Saura C, Tseng L . Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin Cancer Res. 2013; 19(6):1587-95. DOI: 10.1158/1078-0432.CCR-12-1359. View

2.
Snyder A, Nathanson T, Funt S, Ahuja A, Buros Novik J, Hellmann M . Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. PLoS Med. 2017; 14(5):e1002309. PMC: 5446110. DOI: 10.1371/journal.pmed.1002309. View

3.
Hatzis C, Pusztai L, Valero V, Booser D, Esserman L, Lluch A . A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 2011; 305(18):1873-81. PMC: 5638042. DOI: 10.1001/jama.2011.593. View

4.
Mariathasan S, Turley S, Nickles D, Castiglioni A, Yuen K, Wang Y . TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693):544-548. PMC: 6028240. DOI: 10.1038/nature25501. View

5.
Sahu A, S Lee J, Wang Z, Zhang G, Iglesias-Bartolome R, Tian T . Genome-wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy. Mol Syst Biol. 2019; 15(3):e8323. PMC: 6413886. DOI: 10.15252/msb.20188323. View