» Articles » PMID: 33854254

Human Fetal Whole-body Postmortem Microfocus Computed Tomographic Imaging

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2021 Apr 15
PMID 33854254
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Perinatal autopsy is the standard method for investigating fetal death; however, it requires dissection of the fetus. Human fetal microfocus computed tomography (micro-CT) provides a generally more acceptable and less invasive imaging alternative for bereaved parents to determine the cause of early pregnancy loss compared with conventional autopsy techniques. In this protocol, we describe the four main stages required to image fetuses using micro-CT. Preparation of the fetus includes staining with the contrast agent potassium triiodide and takes 3-19 d, depending on the size of the fetus and the time taken to obtain consent for the procedure. Setup for imaging requires appropriate positioning of the fetus and takes 1 h. The actual imaging takes, on average, 2 h 40 min and involves initial test scans followed by high-definition diagnostic scans. Postimaging, 3 d are required to postprocess the fetus, including removal of the stain, and also to undertake artifact recognition and data transfer. This procedure produces high-resolution isotropic datasets, allowing for radio-pathological interpretations to be made and long-term digital archiving for re-review and data sharing, where required. The protocol can be undertaken following appropriate training, which includes both the use of micro-CT techniques and handling of postmortem tissue.

Citing Articles

Development of A Micro-CT Scanner with Dual-Energy Option and Endovascular Contrast Agent Administration Protocol for Fetal and Neonatal Virtual Autopsy.

Zboray R, Schweitzer W, Ebert L, Wolf M, Guglielmini S, Haemmerle S J Imaging. 2024; 10(3).

PMID: 38535140 PMC: 10971097. DOI: 10.3390/jimaging10030060.


Body weight-based iodinated contrast immersion timing for human fetal postmortem microfocus computed tomography.

Simcock I, Shelmerdine S, Hutchinson J, Sebire N, Arthurs O BJR Open. 2024; 6(1):tzad006.

PMID: 38352185 PMC: 10860501. DOI: 10.1093/bjro/tzad006.


An integrated single-cell analysis of human adrenal cortex development.

Del Valle I, Young M, Kildisiute G, Ogunbiyi O, Buonocore F, Simcock I JCI Insight. 2023; 8(14).

PMID: 37440461 PMC: 10443814. DOI: 10.1172/jci.insight.168177.


Microfocus computed tomography for fetal postmortem imaging: an overview.

Docter D, Dawood Y, Jacobs K, Hagoort J, Oostra R, van den Hoff M Pediatr Radiol. 2022; 53(4):632-639.

PMID: 36169668 PMC: 10027643. DOI: 10.1007/s00247-022-05517-1.


Post-mortem perinatal imaging: what is the evidence?.

Shelmerdine S, Arthurs O Br J Radiol. 2022; 96(1147):20211078.

PMID: 35451852 PMC: 10321257. DOI: 10.1259/bjr.20211078.


References
1.
Michalski S, Porter J, Pauli R . Costs and consequences of comprehensive stillbirth assessment. Am J Obstet Gynecol. 2002; 186(5):1027-34. DOI: 10.1067/mob.2002.122450. View

2.
Blokker B, Wagensveld I, Weustink A, Oosterhuis J, Hunink M . Non-invasive or minimally invasive autopsy compared to conventional autopsy of suspected natural deaths in adults: a systematic review. Eur Radiol. 2015; 26(4):1159-79. PMC: 4778156. DOI: 10.1007/s00330-015-3908-8. View

3.
Lewis C, Hill M, Arthurs O, Hutchinson C, Chitty L, Sebire N . Factors affecting uptake of postmortem examination in the prenatal, perinatal and paediatric setting. BJOG. 2017; 125(2):172-181. PMC: 5763339. DOI: 10.1111/1471-0528.14600. View

4.
Sieswerda-Hoogendoorn T, van Rijn R . Current techniques in postmortem imaging with specific attention to paediatric applications. Pediatr Radiol. 2009; 40(2):141-52. PMC: 2803260. DOI: 10.1007/s00247-009-1486-0. View

5.
Kang X, Cos T, Guizani M, Cannie M, Segers V, Jani J . Parental acceptance of minimally invasive fetal and neonatal autopsy compared with conventional autopsy. Prenat Diagn. 2014; 34(11):1106-10. DOI: 10.1002/pd.4435. View