» Articles » PMID: 33835435

Modeling and Predicting RNA Three-Dimensional Structures

Overview
Specialty Molecular Biology
Date 2021 Apr 9
PMID 33835435
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Modeling the three-dimensional structure of RNAs is a milestone toward better understanding and prediction of nucleic acids molecular functions. Physics-based approaches and molecular dynamics simulations are not tractable on large molecules with all-atom models. To address this issue, coarse-grained models of RNA three-dimensional structures have been developed. In this chapter, we describe a graphical modeling based on the Leontis-Westhof extended base pair classification. This representation of RNA structures enables us to identify highly conserved structural motifs with complex nucleotide interactions in structure databases. We show how to take advantage of this knowledge to quickly predict three-dimensional structures of large RNA molecules and present the RNA-MoIP web server (http://rnamoip.cs.mcgill.ca) that streamlines the computational and visualization processes. Finally, we show recent advances in the prediction of local 3D motifs from sequence data with the BayesPairing software and discuss its impact toward complete 3D structure prediction.

Citing Articles

Identification and characterization of host miRNAs that target the mouse mammary tumour virus (MMTV) genome.

Gull B, Ahmad W, Baby J, Panicker N, Khader T, Rizvi T Open Biol. 2024; 14(12):240203.

PMID: 39657819 PMC: 11631425. DOI: 10.1098/rsob.240203.


RNA 3D Structure Prediction Using Coarse-Grained Models.

Li J, Chen S Front Mol Biosci. 2021; 8:720937.

PMID: 34277713 PMC: 8283274. DOI: 10.3389/fmolb.2021.720937.

References
1.
Bekaert M, Bidou L, Denise A, Duchateau-Nguyen G, Forest J, Froidevaux C . Towards a computational model for -1 eukaryotic frameshifting sites. Bioinformatics. 2003; 19(3):327-35. PMC: 7109833. DOI: 10.1093/bioinformatics/btf868. View

2.
Vitreschak A, Rodionov D, Mironov A, Gelfand M . Riboswitches: the oldest mechanism for the regulation of gene expression?. Trends Genet. 2003; 20(1):44-50. DOI: 10.1016/j.tig.2003.11.008. View

3.
Szewczak A, Moore P, Chang Y, Wool I . The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci U S A. 1993; 90(20):9581-5. PMC: 47613. DOI: 10.1073/pnas.90.20.9581. View

4.
Jonikas M, Radmer R, Laederach A, Das R, Pearlman S, Herschlag D . Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA. 2009; 15(2):189-99. PMC: 2648710. DOI: 10.1261/rna.1270809. View

5.
Poursina M, Bhalerao K, Flores S, Anderson K, Laederach A . Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. Methods Enzymol. 2010; 487:73-98. PMC: 3026659. DOI: 10.1016/B978-0-12-381270-4.00003-2. View