» Articles » PMID: 33830742

Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides

Overview
Date 2021 Apr 8
PMID 33830742
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation. A series of thiol-responsive copolymers of racemic polysarcosine--poly(-ethylsulfonyl-dl-cysteine) (pSar--p(dl)Cys), enantiopure polysarcosine--poly(-ethylsulfonyl-l-cysteine) (pSar--p(l)Cys), and polysarcosine--poly(-ethylsulfonyl-l-homocysteine) (pSar--p(l)Hcy) was prepared by -carboxyanhydride polymerization. The secondary structure of the peptide segment varies from α-helices (pSar--p(l)Hcy) to antiparallel β-sheets (pSar--p(l)Cys) and disrupted β-sheets (pSar--p(dl)Cys). When subjected to nanoprecipitation, copolymers with antiparallel β-sheets display the strongest tendency to self-assemble, whereas disrupted β-sheets hardly induce aggregation. This translates to worm-like micelles, solely spherical micelles, or ellipsoidal structures, as analyzed by atomic force microscopy and cryogenic transmission electron microscopy, which underlines the potential of secondary structure-driven self-assembly of synthetic polypeptides.

Citing Articles

Superparamagnetic Iron Oxide Nanoparticles Reprogram the Tumor Microenvironment and Reduce Lung Cancer Regrowth after Crizotinib Treatment.

Horvat N, Chocarro S, Marques O, Bauer T, Qiu R, Diaz-Jimenez A ACS Nano. 2024; 18(17):11025-11041.

PMID: 38626916 PMC: 11064219. DOI: 10.1021/acsnano.3c08335.


Sulfur Switches for Responsive Peptide Materials.

Deming T Acc Chem Res. 2024; 57(5):661-669.

PMID: 38373227 PMC: 10918826. DOI: 10.1021/acs.accounts.3c00626.


Tuning the Cross-Linking Density and Cross-Linker in Core Cross-Linked Polymeric Micelles and Its Effects on the Particle Stability in Human Blood Plasma and Mice.

Bauer T, Alberg I, Zengerling L, Besenius P, Koynov K, Slutter B Biomacromolecules. 2023; 24(8):3545-3556.

PMID: 37449781 PMC: 10428167. DOI: 10.1021/acs.biomac.3c00308.


Cysteine Redox Chemistry in Peptide Self-Assembly to Modulate Hydrogelation.

Cringoli M, Marchesan S Molecules. 2023; 28(13).

PMID: 37446630 PMC: 10343219. DOI: 10.3390/molecules28134970.

References
1.
Mai Y, Eisenberg A . Self-assembly of block copolymers. Chem Soc Rev. 2012; 41(18):5969-85. DOI: 10.1039/c2cs35115c. View

2.
Son K, Ueda M, Taguchi K, Maruyama T, Takeoka S, Ito Y . Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release. 2020; 322:209-216. DOI: 10.1016/j.jconrel.2020.03.022. View

3.
Koufaki M, Kiziridi C, Alexi X, Alexis M . Design and synthesis of novel neuroprotective 1,2-dithiolane/chroman hybrids. Bioorg Med Chem. 2009; 17(17):6432-41. DOI: 10.1016/j.bmc.2009.07.010. View

4.
Kelley E, Murphy R, Seppala J, Smart T, Hann S, Sullivan M . Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway. Nat Commun. 2014; 5:3599. PMC: 4225159. DOI: 10.1038/ncomms4599. View

5.
Schafer O, Huesmann D, Muhl C, Barz M . Rethinking Cysteine Protective Groups: S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation. Chemistry. 2016; 22(50):18085-18091. DOI: 10.1002/chem.201604391. View