DNA Origami-Enabled Plasmonic Sensing
Overview
Affiliations
The reliable programmability of DNA origami makes it an extremely attractive tool for bottom-up self-assembly of complex nanostructures. Utilizing this property for the tuned arrangement of plasmonic nanoparticles holds great promise particularly in the field of biosensing. Plasmonic particles are beneficial for sensing in multiple ways, from enhancing fluorescence to enabling a visualization of the nanoscale dynamic actuation via chiral rearrangements. In this Perspective, we discuss the recent developments and possible future directions of DNA origami-enabled plasmonic sensing systems. We start by discussing recent advancements in the area of fluorescence-based plasmonic sensing using DNA origami. We then move on to surface-enhanced Raman spectroscopy sensors followed by chiral sensing, both utilizing DNA origami nanostructures. We conclude by providing our own views on the future prospects for plasmonic biosensors enabled using DNA origami.
Ghamari S, Chiarelli G, Kolataj K, Subramanian S, Acuna G, Vollmer F Nanophotonics. 2025; 14(2):253-262.
PMID: 39927203 PMC: 11806501. DOI: 10.1515/nanoph-2024-0560.
Molecular Origami: Designing Functional Molecules of the Future.
Ishida H, Ito T, Kuzuya A Molecules. 2025; 30(2).
PMID: 39860111 PMC: 11768013. DOI: 10.3390/molecules30020242.
Label-free optical biosensors in the pandemic era.
Nava G, Zanchetta G, Giavazzi F, Buscaglia M Nanophotonics. 2024; 11(18):4159-4181.
PMID: 39634532 PMC: 11502114. DOI: 10.1515/nanoph-2022-0354.
Mostafa A, Kanehira Y, Tapio K, Bald I Nano Lett. 2024; 24(23):6916-6923.
PMID: 38829305 PMC: 11177308. DOI: 10.1021/acs.nanolett.4c00834.
DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration.
Yang Q, Chang X, Lee J, Saji M, Zhang F Nat Commun. 2023; 14(1):7675.
PMID: 37996416 PMC: 10667507. DOI: 10.1038/s41467-023-43558-8.