» Articles » PMID: 33789894

Deformation-induced Crystalline-to-amorphous Phase Transformation in a CrMnFeCoNi High-entropy Alloy

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Apr 1
PMID 33789894
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The Cantor high-entropy alloy (HEA) of CrMnFeCoNi is a solid solution with a face-centered cubic structure. While plastic deformation in this alloy is usually dominated by dislocation slip and deformation twinning, our in situ straining transmission electron microscopy (TEM) experiments reveal a crystalline-to-amorphous phase transformation in an ultrafine-grained Cantor alloy. We find that the crack-tip structural evolution involves a sequence of formation of the crystalline, lamellar, spotted, and amorphous patterns, which represent different proportions and organizations of the crystalline and amorphous phases. Such solid-state amorphization stems from both the high lattice friction and high grain boundary resistance to dislocation glide in ultrafine-grained microstructures. The resulting increase of crack-tip dislocation densities promotes the buildup of high stresses for triggering the crystalline-to-amorphous transformation. We also observe the formation of amorphous nanobridges in the crack wake. These amorphization processes dissipate strain energies, thereby providing effective toughening mechanisms for HEAs.

Citing Articles

Tension-compression asymmetry of gradient nanograined high-entropy alloys.

Yang X, Yin F RSC Adv. 2025; 15(10):7546-7562.

PMID: 40065821 PMC: 11891869. DOI: 10.1039/d5ra00735f.


A one-step fabrication of soft-magnetic high entropy alloy fiber with excellent strength and flexibility.

Ma Y, Kou Z, Yang W, He A, Dong Y, Man Q Nat Commun. 2024; 15(1):10549.

PMID: 39632892 PMC: 11618367. DOI: 10.1038/s41467-024-54984-7.


Theoretical Prediction of Strengthening in Nanocrystalline Cu with Multi-Element Grain Boundary Segregation Decoration.

Guo F, Li C, Fu T, Peng X Materials (Basel). 2024; 17(11).

PMID: 38893768 PMC: 11172879. DOI: 10.3390/ma17112504.


Elastic strain-induced amorphization in high-entropy alloys.

Bu Y, Wu Y, Lei Z, Yuan X, Liu L, Wang P Nat Commun. 2024; 15(1):4599.

PMID: 38816379 PMC: 11139900. DOI: 10.1038/s41467-024-48619-0.


Quantifying the Size-Dependent Shear Banding Behavior in High-Entropy Alloy-Based Nanolayered Glass.

Dai K, Zhang C, Lu W, Li J Nanomaterials (Basel). 2024; 14(6).

PMID: 38535693 PMC: 10976192. DOI: 10.3390/nano14060546.


References
1.
Sun S, Kong D, Li D, Liao X, Liu D, Mao S . Atomistic Mechanism of Stress-Induced Combined Slip and Diffusion in Sub-5 Nanometer-Sized Ag Nanowires. ACS Nano. 2019; 13(8):8708-8716. DOI: 10.1021/acsnano.9b00474. View

2.
Liao X, Zou J, Cockayne D, Matsumura S . [001] zone-axis bright-field diffraction contrast from coherent Ge(Si) islands on Si(001). Ultramicroscopy. 2004; 98(2-4):239-47. DOI: 10.1016/j.ultramic.2003.08.017. View

3.
Guo H, Yan P, Wang Y, Tan J, Zhang Z, Sui M . Tensile ductility and necking of metallic glass. Nat Mater. 2007; 6(10):735-9. DOI: 10.1038/nmat1984. View

4.
Huang J, Zhong L, Wang C, Sullivan J, Xu W, Zhang L . In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode. Science. 2010; 330(6010):1515-20. DOI: 10.1126/science.1195628. View

5.
Zhang Z, Mao M, Wang J, Gludovatz B, Zhang Z, Mao S . Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015; 6:10143. PMC: 4682111. DOI: 10.1038/ncomms10143. View