Wilsey M, Taseska T, Lyu Q, Cox C, Muller A
Beilstein J Nanotechnol. 2025; 16:349-361.
PMID: 40078835
PMC: 11897648.
DOI: 10.3762/bjnano.16.26.
Li P, Jiang Y, Men Y, Jiao Y, Chen S
Nat Commun. 2025; 16(1):1844.
PMID: 39984483
PMC: 11845716.
DOI: 10.1038/s41467-025-56966-9.
Gisbert-Gonzalez J, Rodellar C, Druce J, Ortega E, Cuenya B, Oener S
J Am Chem Soc. 2025; 147(6):5472-5485.
PMID: 39900519
PMC: 11826909.
DOI: 10.1021/jacs.4c18638.
Vernon K, Pungsrisai T, Wahab O, Alden S, Zhong Y, Choi M
ACS Electrochem. 2025; 1(1):93-102.
PMID: 39878144
PMC: 11728714.
DOI: 10.1021/acselectrochem.4c00048.
Guo S, Yu M, Lee J, Qiu M, Yuan D, Hu Z
Nat Commun. 2025; 16(1):919.
PMID: 39843478
PMC: 11754753.
DOI: 10.1038/s41467-024-55750-5.
Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu.
Fuller L, Zhang G, Noh S, Van Lehn R, Schreier M
Angew Chem Int Ed Engl. 2024; 64(10):e202421196.
PMID: 39724507
PMC: 11878348.
DOI: 10.1002/anie.202421196.
pH-Mediated Solution-Phase Proton Transfer Drives Enhanced Electrochemical Hydrogenation of Phenol in Alkaline Electrolyte.
Markunas B, Yim T, Snyder J
ACS Catal. 2024; 14(22):16936-16946.
PMID: 39569158
PMC: 11574755.
DOI: 10.1021/acscatal.4c04874.
How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis.
Schott C, Schneider P, Song K, Yu H, Gotz R, Haimerl F
Chem Rev. 2024; 124(22):12391-12462.
PMID: 39527623
PMC: 11613321.
DOI: 10.1021/acs.chemrev.3c00806.
Parameter Dependency of Electrochemical Reduction of CO in Acetonitrile - A Data Driven Approach.
Deacon-Price C, Mijatovic A, Hoefsloot H, Rothenberg G, Garcia A
Chemphyschem. 2024; 26(4):e202400794.
PMID: 39523599
PMC: 11832059.
DOI: 10.1002/cphc.202400794.
Descriptors for Electrochemical CO Reduction in Imidazolium-Based Electrolytes.
Dattila F, Fortunati A, Zammillo F, Guzman H, Lopez N, Hernandez S
ACS Catal. 2024; 14(21):16166-16174.
PMID: 39507486
PMC: 11536349.
DOI: 10.1021/acscatal.4c05012.
Investigating Gold Deposition with High-Power Impulse Magnetron Sputtering and Direct-Current Magnetron Sputtering on Polystyrene, Poly-4-vinylpyridine, and Polystyrene Sulfonic Acid.
Bulut Y, Sochor B, Reck K, Schummer B, Meinhardt A, Drewes J
Langmuir. 2024; 40(43):22591-22601.
PMID: 39402930
PMC: 11526365.
DOI: 10.1021/acs.langmuir.4c02344.
Modulating Surface Cation Concentration via Tuning the Molecular Structures of Ethylene Glycol-Functionalized PEDOT for Improved Alkaline Hydrogen Evolution Reaction.
Lin H, Liang H, Luo S
JACS Au. 2024; 4(8):3070-3083.
PMID: 39211622
PMC: 11350742.
DOI: 10.1021/jacsau.4c00409.
Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis.
Zhang L, Hu H, Sun C, Xiao D, Wang H, Xiao Y
Nat Commun. 2024; 15(1):7179.
PMID: 39169004
PMC: 11339425.
DOI: 10.1038/s41467-024-51370-1.
Tracking the surface structure and the influence of cations and anions on the double-layer region of a Au(111) electrode.
Adnan A, Behjati S, Felez-Guerrero N, Ojha K, Koper M
Phys Chem Chem Phys. 2024; 26(32):21419-21428.
PMID: 39086202
PMC: 11323936.
DOI: 10.1039/d4cp02133a.
Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater.
Li M, Li H, Fan H, Liu Q, Yan Z, Wang A
Nat Commun. 2024; 15(1):6154.
PMID: 39039058
PMC: 11263604.
DOI: 10.1038/s41467-024-50535-2.
Effect of a Physisorbed Tetrabutylammonium Cation Film on Alkaline Hydrogen Evolution Reaction on Pt Single-Crystal Electrodes.
Fernandez-Vidal J, Koper M
ACS Catal. 2024; 14(11):8130-8137.
PMID: 38868101
PMC: 11165451.
DOI: 10.1021/acscatal.4c01765.
Tuning hydrogen bond network connectivity in the electric double layer with cations.
Tang B, Fang Y, Zhu S, Bai Q, Li X, Wei L
Chem Sci. 2024; 15(19):7111-7120.
PMID: 38756806
PMC: 11095383.
DOI: 10.1039/d3sc06904d.
Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions.
van der Heijden O, Park S, Vos R, Eggebeen J, Koper M
ACS Energy Lett. 2024; 9(4):1871-1879.
PMID: 38633990
PMC: 11019648.
DOI: 10.1021/acsenergylett.4c00266.
Nickel as Electrocatalyst for CO Reduction: Effect of Temperature, Potential, Partial Pressure, and Electrolyte Composition.
Vos R, Koper M
ACS Catal. 2024; 14(7):4432-4440.
PMID: 38601778
PMC: 11002821.
DOI: 10.1021/acscatal.4c00009.
Unraveling and Resolving the Inconsistencies in Tafel Analysis for Hydrogen Evolution Reactions.
Wan C, Ling Y, Wang S, Pu H, Huang Y, Duan X
ACS Cent Sci. 2024; 10(3):658-665.
PMID: 38559285
PMC: 10979421.
DOI: 10.1021/acscentsci.3c01439.