» Articles » PMID: 33769646

The Interrelated Effect of Cations and Electrolyte PH on the Hydrogen Evolution Reaction on Gold Electrodes in Alkaline Media

Overview
Specialty Chemistry
Date 2021 Mar 26
PMID 33769646
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

In this work we study the role of alkali metal cation concentration and electrolyte pH in altering the kinetics of the hydrogen evolution reaction (HER) at gold (Au) electrodes. We show that at moderately alkaline pH (pH 11), increasing the cation concentration significantly enhances the HER activity on Au electrodes (with a reaction order ≈0.5). Based on these results we suggest that cations play a central role in stabilizing the transition state of the rate-determining Volmer step by favorably interacting with the dissociating water molecule (*H-OH -cat ). Moreover, we show that increasing electrolyte pH (pH 10 to pH 13) tunes the local field strength, which in turn indirectly enhances the activity of HER by tuning the near-surface cation concentration. Interestingly, a too high near-surface cation concentration (at high pH and high cation concentration) leads to a lowering of the HER activity, which we ascribe to a blockage of the surface by near-surface cations.

Citing Articles

Pulsed laser in liquid grafting of gold nanoparticle-carbon support composites.

Wilsey M, Taseska T, Lyu Q, Cox C, Muller A Beilstein J Nanotechnol. 2025; 16:349-361.

PMID: 40078835 PMC: 11897648. DOI: 10.3762/bjnano.16.26.


Kinetic cation effect in alkaline hydrogen electrocatalysis and double layer proton transfer.

Li P, Jiang Y, Men Y, Jiao Y, Chen S Nat Commun. 2025; 16(1):1844.

PMID: 39984483 PMC: 11845716. DOI: 10.1038/s41467-025-56966-9.


Bias Dependence of the Transition State of the Hydrogen Evolution Reaction.

Gisbert-Gonzalez J, Rodellar C, Druce J, Ortega E, Cuenya B, Oener S J Am Chem Soc. 2025; 147(6):5472-5485.

PMID: 39900519 PMC: 11826909. DOI: 10.1021/jacs.4c18638.


Optically Transparent Carbon Electrodes for Single Entity Electrochemistry.

Vernon K, Pungsrisai T, Wahab O, Alden S, Zhong Y, Choi M ACS Electrochem. 2025; 1(1):93-102.

PMID: 39878144 PMC: 11728714. DOI: 10.1021/acselectrochem.4c00048.


Separating nanobubble nucleation for transfer-resistance-free electrocatalysis.

Guo S, Yu M, Lee J, Qiu M, Yuan D, Hu Z Nat Commun. 2025; 16(1):919.

PMID: 39843478 PMC: 11754753. DOI: 10.1038/s41467-024-55750-5.


References
1.
Strmcnik D, Kodama K, van der Vliet D, Greeley J, Stamenkovic V, Markovic N . The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat Chem. 2011; 1(6):466-72. DOI: 10.1038/nchem.330. View

2.
Subbaraman R, Tripkovic D, Strmcnik D, Chang K, Uchimura M, Paulikas A . Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces. Science. 2011; 334(6060):1256-60. DOI: 10.1126/science.1211934. View

3.
Wasileski S, Koper M, Weaver M . Field-dependent electrode-chemisorbate bonding: sensitivity of vibrational stark effect and binding energetics to nature of surface coordination. J Am Chem Soc. 2002; 124(11):2796-805. DOI: 10.1021/ja012200w. View

4.
Rebollar L, Intikhab S, Snyder J, Tang M . Kinetic Isotope Effects Quantify pH-Sensitive Water Dynamics at the Pt Electrode Interface. J Phys Chem Lett. 2020; 11(6):2308-2313. DOI: 10.1021/acs.jpclett.0c00185. View

5.
Shinagawa T, Garcia-Esparza A, Takanabe K . Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 2015; 5:13801. PMC: 4642571. DOI: 10.1038/srep13801. View