» Articles » PMID: 33768548

Pathway Testing for Longitudinal Metabolomics

Overview
Journal Stat Med
Publisher Wiley
Specialty Public Health
Date 2021 Mar 26
PMID 33768548
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a top-down approach for pathway analysis of longitudinal metabolite data. We apply a score test based on a shared latent process mixed model which can identify pathways with differentially progressing metabolites. The strength of our approach is that it can handle unbalanced designs, deals with potential missing values in the longitudinal markers, and gives valid results even with small sample sizes. Contrary to bottom-up approaches, correlations between metabolites are explicitly modeled leveraging power gains. For large pathway sizes, a computationally efficient solution is proposed based on pseudo-likelihood methodology. We demonstrate the advantages of the proposed method in identification of differentially expressed pathways through simulation studies. Finally, longitudinal metabolite data from a mice experiment is analyzed to demonstrate our methodology.

Citing Articles

Bayesian functional analysis for untargeted metabolomics data with matching uncertainty and small sample sizes.

Ma G, Kang J, Yu T Brief Bioinform. 2024; 25(3).

PMID: 38581417 PMC: 10998539. DOI: 10.1093/bib/bbae141.


Multiomic characterization of disease progression in mice lacking dystrophin.

Signorelli M, Tsonaka R, Aartsma-Rus A, Spitali P PLoS One. 2023; 18(3):e0283869.

PMID: 37000843 PMC: 10065259. DOI: 10.1371/journal.pone.0283869.


Metapone: a Bioconductor package for joint pathway testing for untargeted metabolomics data.

Tian L, Li Z, Ma G, Zhang X, Tang Z, Wang S Bioinformatics. 2022; 38(14):3662-3664.

PMID: 35639952 PMC: 9272804. DOI: 10.1093/bioinformatics/btac364.


Penalized regression calibration: A method for the prediction of survival outcomes using complex longitudinal and high-dimensional data.

Signorelli M, Spitali P, Szigyarto C, Tsonaka R Stat Med. 2021; 40(27):6178-6196.

PMID: 34464990 PMC: 9293191. DOI: 10.1002/sim.9178.


Pathway testing for longitudinal metabolomics.

Ebrahimpoor M, Spitali P, Goeman J, Tsonaka R Stat Med. 2021; 40(13):3053-3065.

PMID: 33768548 PMC: 8252476. DOI: 10.1002/sim.8957.

References
1.
Yang L, Yu M, Gao S . Joint Models for Multiple Longitudinal Processes and Time-to-event Outcome. J Stat Comput Simul. 2016; 86(18):3682-3700. PMC: 5135019. DOI: 10.1080/00949655.2016.1181760. View

2.
Tsonaka R, Signorelli M, Sabir E, Seyer A, Hettne K, Aartsma-Rus A . Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models. Hum Mol Genet. 2020; 29(5):745-755. PMC: 7104681. DOI: 10.1093/hmg/ddz309. View

3.
Fieuws S, Verbeke G . Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics. 2006; 62(2):424-31. DOI: 10.1111/j.1541-0420.2006.00507.x. View

4.
Guo X, Qi H, Verfaillie C, Pan W . Statistical significance analysis of longitudinal gene expression data. Bioinformatics. 2003; 19(13):1628-35. DOI: 10.1093/bioinformatics/btg206. View

5.
Storey J, Xiao W, Leek J, Tompkins R, Davis R . Significance analysis of time course microarray experiments. Proc Natl Acad Sci U S A. 2005; 102(36):12837-42. PMC: 1201697. DOI: 10.1073/pnas.0504609102. View