» Articles » PMID: 33753510

Rapid Hyperpolarization and Purification of the Metabolite Fumarate in Aqueous Solution

Abstract

Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at C polarization levels of 30-45%.

Citing Articles

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Chen J, Zhang Q, Chen T, Zheng Z, Song Y, Liu H Natl Sci Rev. 2025; 12(1):nwae406.

PMID: 39764503 PMC: 11702662. DOI: 10.1093/nsr/nwae406.


Enhancing Sensitivity of Nuclear Magnetic Resonance in Biomolecules: Parahydrogen-Induced Hyperpolarization in Synthetic Disulfide-Rich Miniproteins.

Lins J, Miloslavina Y, Avrutina O, Theiss F, Hofmann S, Kolmar H J Am Chem Soc. 2024; 146(51):35175-35184.

PMID: 39662885 PMC: 11673113. DOI: 10.1021/jacs.4c11589.


Rapid in situ carbon-13 hyperpolarization and imaging of acetate and pyruvate esters without external polarizer.

Mohiuddin O, de Maissin H, Pravdivtsev A, Brahms A, Herzog M, Schroder L Commun Chem. 2024; 7(1):240.

PMID: 39443619 PMC: 11499913. DOI: 10.1038/s42004-024-01316-x.


Yeast Solutions and Hyperpolarization Enable Real-Time Observation of Metabolized Substrates Even at Natural Abundance.

Peters J, Assaf C, Mohamad F, Beitz E, Tiwari S, Aden K Anal Chem. 2024; 96(43):17135-17144.

PMID: 39405516 PMC: 11525923. DOI: 10.1021/acs.analchem.4c02419.


Live magnetic observation of parahydrogen hyperpolarization dynamics.

Eills J, Mitchell M, Rius I, Tayler M Proc Natl Acad Sci U S A. 2024; 121(43):e2410209121.

PMID: 39405351 PMC: 11513942. DOI: 10.1073/pnas.2410209121.


References
1.
Wang Z, Ohliger M, Larson P, Gordon J, Bok R, Slater J . Hyperpolarized C MRI: State of the Art and Future Directions. Radiology. 2019; 291(2):273-284. PMC: 6490043. DOI: 10.1148/radiol.2019182391. View

2.
Levitt M . Symmetry constraints on spin dynamics: Application to hyperpolarized NMR. J Magn Reson. 2015; 262:91-99. DOI: 10.1016/j.jmr.2015.08.021. View

3.
Hovener J, Pravdivtsev A, Kidd B, Bowers C, Gloggler S, Kovtunov K . Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl. 2018; 57(35):11140-11162. PMC: 6105405. DOI: 10.1002/anie.201711842. View

4.
Ripka B, Eills J, Kourilova H, Leutzsch M, Levitt M, Munnemann K . Hyperpolarized fumarate via parahydrogen. Chem Commun (Camb). 2018; 54(86):12246-12249. DOI: 10.1039/c8cc06636a. View

5.
Nelson S, Kurhanewicz J, Vigneron D, Larson P, Harzstark A, Ferrone M . Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate. Sci Transl Med. 2013; 5(198):198ra108. PMC: 4201045. DOI: 10.1126/scitranslmed.3006070. View