» Articles » PMID: 33747737

Droplet-Based Single-Cell Measurements of 16S RRNA Enable Integrated Bacteria Identification and Pheno-Molecular Antimicrobial Susceptibility Testing from Clinical Samples in 30 min

Overview
Journal Adv Sci (Weinh)
Date 2021 Mar 22
PMID 33747737
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Empiric broad-spectrum antimicrobial treatments of urinary tract infections (UTIs) have contributed to widespread antimicrobial resistance. Clinical adoption of evidence-based treatments necessitates rapid diagnostic methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) with minimal sample preparation. In response, a microfluidic droplet-based platform is developed for achieving both ID and AST from urine samples within 30 min. In this platform, fluorogenic hybridization probes are utilized to detect 16S rRNA from single bacterial cells encapsulated in picoliter droplets, enabling molecular identification of uropathogenic bacteria directly from urine in as little as 16 min. Moreover, in-droplet single-bacterial measurements of 16S rRNA provide a surrogate for AST, shortening the exposure time to 10 min for gentamicin and ciprofloxacin. A fully integrated device and screening workflow were developed to test urine specimens for one of seven unique diagnostic outcomes including the presence/absence of Gram-negative bacteria, molecular ID of the bacteriaas , an , or other organism, and assessment of bacterial susceptibility to ciprofloxacin. In a 50-specimen clinical comparison study, the platform demonstrates excellent performance compared to clinical standard methods (areas-under-curves, AUCs >0.95), within a small fraction of the turnaround time, highlighting its clinical utility.

Citing Articles

Single-cell pathogen diagnostics for combating antibiotic resistance.

Li H, Hsieh K, Wong P, Mach K, Liao J, Wang T Nat Rev Methods Primers. 2025; 3.

PMID: 39917628 PMC: 11800871. DOI: 10.1038/s43586-022-00190-y.


Microfluidic technologies for advanced antimicrobial susceptibility testing.

Wu W, Mu Y Biomicrofluidics. 2024; 18(3):031504.

PMID: 38855477 PMC: 11162290. DOI: 10.1063/5.0190112.


Advances in the isolation, cultivation, and identification of gut microbes.

Xu M, Pan F, Peng L, Yang Y Mil Med Res. 2024; 11(1):34.

PMID: 38831462 PMC: 11145792. DOI: 10.1186/s40779-024-00534-7.


Automated and miniaturized screening of antibiotic combinations robotic-printed combinatorial droplet platform.

Shao F, Li H, Hsieh K, Zhang P, Li S, Wang T Acta Pharm Sin B. 2024; 14(4):1801-1813.

PMID: 38572105 PMC: 10985126. DOI: 10.1016/j.apsb.2023.11.027.


Cellular immunity analysis by a modular acoustofluidic platform: CIAMAP.

Zhong R, Sullivan M, Upreti N, Chen R, De Ganzo A, Yang K Sci Adv. 2023; 9(51):eadj9964.

PMID: 38134285 PMC: 10745697. DOI: 10.1126/sciadv.adj9964.


References
1.
Guan W, Chen L, Rane T, Wang T . Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification. Sci Rep. 2015; 5:13795. PMC: 4558716. DOI: 10.1038/srep13795. View

2.
Raja S, Ching J, Xi L, Hughes S, Chang R, Wong W . Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin Chem. 2005; 51(5):882-90. DOI: 10.1373/clinchem.2004.046474. View

3.
Olsen G, Woese C . Ribosomal RNA: a key to phylogeny. FASEB J. 1993; 7(1):113-23. DOI: 10.1096/fasebj.7.1.8422957. View

4.
Frost I, Van Boeckel T, Pires J, Craig J, Laxminarayan R . Global geographic trends in antimicrobial resistance: the role of international travel. J Travel Med. 2019; 26(8). DOI: 10.1093/jtm/taz036. View

5.
Waldeisen J, Wang T, Mitra D, Lee L . A real-time PCR antibiogram for drug-resistant sepsis. PLoS One. 2011; 6(12):e28528. PMC: 3229610. DOI: 10.1371/journal.pone.0028528. View